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OBJECTIVES: 

 To introduce the concepts of Mathematical Modeling of Engineering Problems. 

 To appreciate the use of FEM to a range of Engineering Problems. 

UNIT I INTRODUCTION           

Historical Background – Mathematical Modeling of field problems in Engineering – Governing 

Equations – Discrete and continuous models – Boundary, Initial and Eigen Value problems– Weighted 

Residual Methods – Variational Formulation of Boundary Value Problems – Ritz Technique – Basic 

concepts of the Finite Element Method. 

 

UNIT II ONE-DIMENSIONAL PROBLEMS  

One Dimensional Second Order Equations – Discretization – Element types- Linear and Higher order 

Elements – Derivation of Shape functions and Stiffness matrices and force vectors- Assembly of 

Matrices - Solution of problems from solid mechanics and heat transfer. Longitudinal vibration 

frequencies and mode shapes. Fourth Order Beam Equation –Transverse deflections and Natural 

frequencies of beams. 

 

UNIT III TWO DIMENSIONAL SCALAR VARIABLE PROBLEMS  

Second Order 2D Equations involving Scalar Variable Functions – Variational formulation –Finite 

Element formulation – Triangular elements – Shape functions and element matrices and 

vectors.Application to Field Problems - Thermal problems – Torsion of Non circular shafts –

Quadrilateral elements – Higher Order Elements. 

 

UNIT IV TWO DIMENSIONAL VECTOR VARIABLE PROBLEMS  

Equations of elasticity – Plane stress, plane strain and axisymmetric problems – Body forces and 

temperature effects – Stress calculations - Plate and shell elements. 
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UNIT V ISOPARAMETRIC FORMULATION  

Natural co-ordinate systems – Isoparametric elements – Shape functions for iso parametric elements – 

One and two dimensions – Serendipity elements – Numerical integration and application to plane stress 

problems - Matrix solution techniques – Solutions Techniques to Dynamic problems – Introduction to 

Analysis Software. 

TOTAL : 45 PERIODS 

OUTCOMES: 

 Upon completion of this course, the students can able to understand different 

mathematicalTechniques used in FEM analysis and use of them in Structural and thermal 

problem 
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UNIT-I 

       INTRODUCTION 

1. Write short notes on Finite Element Analysis with its historical background. 

Finite Element Analysis: 

The Finite Element Analysis is a computer aided mathematical technique that is used to obtain 

an approximate numerical solution to the fundamental differential and/or integral equations that predict 

the response of physical systems to external effects. 



UNIT-I / INTRODUCTION  P a g e  | 3 
 

ME8692 FINITE ELEMENT ANALYSIS  
  
 

In Finite Element Analysis, a given domain is viewed as a collection of subdomains, and over each 

subdomain the governing equation is approximated by any of the traditional vibrational methods. 

 

External influence:  

 When a bar is subjected to an axial pull  ‘P’ it elongates   

 When a metallic rod is heated its temperature rises   

 When a beam is subjected to an external harmonic excitation it vibrates 

In the above examples the force ‘P’, or heat flux ‘q’ or harmonic excitation force constitute the 

“external influence” that causes the system to change. 

 The elongation, temperature rise or vibration represents the system’s response to the external influence.  

Finite Element Analysis, is a mathematical technique used to predict the response of structures and 

materials to environmental factors. 

Finite Element Analysis (FEA) is used to numerically simulate the real world without the need to test 

prototypes in a lab. 

HISTORICAL BACKGROUND: 

Finite Element Analysis was first developed in the early 1960's as a simulation and design tool in the 

aerospace and nuclear industries where the safety of structures is critical. 

The process starts with the creation of a geometric model. Then, the model is subdivided (meshed) into 

small pieces (elements) of simple shapes connected at specific node points. Within each element, the 

variation of displacement is assumed to be determined by simple polynomial shape functions and nodal 

displacements. 

Equations for the strains and stresses are developed in terms of the unknown nodal displacements. From 

this, the equations of equilibrium are assembled in a matrix which can be easily programmed and solved 

on a computer. After applying the appropriate boundary conditions, the nodal displacements are found 

by solving the matrix stiffness equation. Once the nodal displacements are known, element stresses and 

strains can be calculated. 

Only within the last few years have computers become powerful enough to solve these FEA math 

problems in a timely fashion, and thus help improve the engineering process. 

Predictive Method of Analysis Vs Experimental Analysis 

 Determination of the solution for a complicated problem by replacing it by a simpler one. 
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 Geometrically complex domain represented as a collection of smaller manageable domains. 

 Solution to these geometrically simple domains is easier. 

 Replacing the original complex geometry as an assemblage of smaller simple geometry will   

result in only an approximate solution.  

Applications 

 Structural Engineering Aerospace Engineering (a) Automobile Engineering (b,c,d) 

 Thermal applications  Acoustics   Flow Problems 

 Dynamics   Metal Forming  Medical & Dental applications(e) 

 Soil mechanics etc. 

 
a) Aeroplane Analysis  b) Inlet Manifold c)Piston Analysisd) crankshaft Analysis 

    

 
e)Elbow analysis 

Applications of FEA 

Finite element Analysis is Suitable for: 

 Complex geometry 

 Complex loading  

 Complex material properties   
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2. Discuss the mathematical modeling of problems in engineering 

MATHEMATICAL MODELING OF PROBLEMS IN ENGINEERING 

Any Engineering problems can be solved by using three different methods separately. 

1. Analytical method 

2. Numerical method 

3. Experimental method 

Analytical method 

 Analytical method is a classical approach technique. 

 It gives 100% accurate results 

 It is a closed form of solution. 

 This method is applicable only for simple problems like cantilever and simply supported beams 

etc. 

Numerical method 

 Finite element method is one of the numerical methods. 

 Numerical method is a mathematical representation. 

 In this method, many assumptions are made and it gives approximate solution. 

 This method is applicable even if physical prototype is not available. 

 Numerical methods deals with real life complicated problems. 

 The result obtained by this method cannot be believed blindly and the results must be verified by 

the experimental method. This process of comparison is called as Validation. 

 But this method will be useful to obtain the range of results. 

 It minimizes the number of experiments and reduces the cost and time. 

NUMERICAL SOLUTION TECHNIQUES 

Weighted Residual Methods - Collocation method 

                -  Sub domain method 

                -  Least squares method 

                            -  Galerkin method  

 Finite Difference Method 
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 Rayleigh Ritz Technique 

 Finite Element Method 

 Boundary Element Method  

Examples: 

 Finite element method is useful for linear, non-linear, buckling, thermal, dynamic and fatigue 

analysis. 

 Boundary element method is useful for Acoustics. 

 Finite Volume Method is useful for Computational Fluid Dynamics (CFD) and computational 

electromagnetics. 

 Finite Difference Method is used for thermal and fluid flow analysis. 

 

Experimental method 

 This method involves in the actual measurements. 

 Experimental methods are time consuming and needs expensive setup. 

 This method is only applicable only if physical prototype is available. 

 Results can be believed but it requires atleast 3 to 5 prototypes readings for testing. 

 It uses strain gauge, photo elasticity, vibration measuring instruments, sensors for temperature 

and pressure measurements, fatigue test, etc., 

Finite Element Method (FEM) 

 It is a numerical method. 

 Mathematical representation of actual problem. 

 It is an approximate method. 

 Any continuous object has infinite degrees of freedom and it is just not possible to solve the 

problem min this format. 

 FEM reduces degrees of freedom from infinite to finite with the help of discretization. 

Boundary Element Method (BEM) 

 It is very powerful and efficient technique to solve acoustics problems. 

 Similar FEM, But BEM consider only outer boundary of the surface and volume. 

 If the problem is of a volume only outer surfaces are considered if the domain is of area, then 

only outer periphery is considered. 

Based on application, the finite element problems are classified as follows. 

I. Structural Problems 

II. Non-Structural problems 
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Structural Problems 

In structural problems, displacement at each nodal point is obtained. By using these displacement 

solutions, stress and strain in each element can be calculated. 

Non-Structural problems 

In non-structural problems, temperature or fluid pressure at each nodal point is obtained. By using these 

values, properties such as heat flow, fluid flow etc., for each element can be calculated. 

Finite Volume Method (FVM) 

 All CFD (Computational Fluid Dynamics) soft wares are based on Finite Volume Method. 

 Unit volume is considered in FVM. 

 FVM is based on Navier-Stokes equation (i.e) Mass momentum and enery conservation 

equilibrium equation. 

Finite Difference Method (FDM) 

 FDM is used to solve differential equations.  

 It uses Taylors series (or) Difference table for converting differential equation into algebraic 

equation by eliminating higher order terms. 

 The various derivatives such as  
𝑑𝑦

𝑑𝑥
 , 

𝑑2𝑦

𝑑𝑥2 that exist in the differential equation are expressed in an 

approximate manner as difference form. 

  The beam or column is discretized into a number of smaller portions and the end portions are 

called as nodes or points.  

 The differential equation, split in this discrete form is applied to each node.  

 This results in a set of simultaneous equations. 

 After eliminating some of the unknowns by applying the boundary conditions, the remaining 

unknowns are solved simultaneously. 

 

4. Derive the Governing equation of bar element. 

GOVERNING EQUATIONS:Mathematical modeling 
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Example of a taper rod subjected a point load ‘P’ and its own self weight  

 

For equilibrium   ( +d) A(x) +  A(x) dx -  A(X) = 0      --(1) 

i.e) d A(x) +  A(x) dx  = 0         ---(2)  (A(x) = A0 - (A0-A1) x/l ) 

 

 

 

Where    - stress,  - strain &  E  - Young’s Modulus (from continuum mechanics,   =  du / dx) 

(3) in (2 ) &  dividing by dx. 

 

 

 

)3(
dx

du
EE

0)(
))((

 xA
dx

xAd
E 


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For a bar of constant cross section Governing Equation 

 

 

Boundary conditions: 

 

Variables:  

 Primary      eg. Displacement, u     Temperature, T 

 Secondaryeg. Force EA du/dx     Heat flux –KA dT/dx 

     Moment – EI (d2w/dx2) 

Boundary conditions: 

 Essential/ Geometric/ Dirichlet Boundary conditions 

 Natural/ Force/ Neumann Boundary conditions 

Boundary Conditions Can Be Of The Following Two Types 

    HOMOGENEOUS eg. u(0)= 0  

    NON-HOMOGENEOUS eg. T(0)=80 

Loads: 

 Volume loads     N/m3 N/meg. Self weight, UDL 

 Point loads         N    

5. Write short notes on Discrete and continuous models. 

DISCRETE AND CONTINUOUS MODELS 

)4(0)(

)(





























xA
dx

dx

du
xAd

E 

)5(0)()(
2

2

 xA
dx

ud
xEA 
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A discrete element models (DEM), also called a distinct element method is any of a family 

of numerical methods for computing the motion and effect of a large number of small particles. Though 

DEM is very closely related to molecular dynamics, the method is generally distinguished by its 

inclusion of rotational degrees-of-freedom as well as stateful contact and often complicated geometries 

(including polyhedra).  

With advances in computing power and numerical algorithms for nearest neighbor sorting, it has 

become possible to numerically simulate millions of particles on a single processor.  

Discrete element methods are relatively computationally intensive, which limits either the length of a 

simulation or the number of particles. Several DEM codes, as do molecular dynamics codes, take 

advantage of parallel processing capabilities (shared or distributed systems) to scale up the number of 

particles or length of the simulation. An alternative to treating all particles separately is to average the 

physics across many particles and thereby treat the material as a continuum.  

In the case of solid-like granular behavior as in soil mechanics, the continuum approach usually treats 

the material as elastic or elasto-plastic and models it with the finite element method or a mesh free 

method. In the case of liquid-like or gas-like granular flow, the continuum approach may treat the 

material as a fluid and use computational fluid dynamics. Drawbacks to homogenization of the granular 

scale physics, however, are well-documented and should be considered carefully before attempting to 

use a continuum approach. 

Continuous modelling is the mathematical practice of applying a model to continuous data (data which 

has a potentially infinite number, and divisibility, of attributes). They often use differential 

equations and are converse to discrete modelling. 

Modelling is generally broken down into several steps: 

 Making assumptions about the data: The modeller decides what is influencing the data and what 

can be safely ignored. 

 Making equations to fit the assumptions. 

 Solving the equations. 

 Verifying the results: Various statistical tests are applied to the data and the model and 

compared. 

 If the model passes the verification progress it is put into practice. 

6. Derive the difference form for beam element. 

Derivatives in Difference Form: 

https://en.wikipedia.org/wiki/Numerical_analysis
https://en.wikipedia.org/wiki/Molecular_dynamics
https://en.wikipedia.org/wiki/Continuum_mechanics
https://en.wikipedia.org/wiki/Solid
https://en.wikipedia.org/wiki/Soil_mechanics
https://en.wikipedia.org/wiki/Elasticity_(physics)
https://en.wikipedia.org/wiki/Plasticity_(physics)
https://en.wikipedia.org/wiki/Finite_element_method
https://en.wikipedia.org/wiki/Meshfree_methods
https://en.wikipedia.org/wiki/Meshfree_methods
https://en.wikipedia.org/wiki/Fluid
https://en.wikipedia.org/wiki/Computational_fluid_dynamics
https://en.wikipedia.org/wiki/Homogenization_(chemistry)
https://en.wikipedia.org/wiki/Mathematical
https://en.wikipedia.org/wiki/Mathematical_model
https://en.wikipedia.org/wiki/Continuous_function
https://en.wikipedia.org/wiki/Differential_equation
https://en.wikipedia.org/wiki/Differential_equation
https://en.wikipedia.org/wiki/Discrete_modelling
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Frequently deflection and stability problems may involves the integration of the differential equations as 

given below, 

𝑑2𝑦

𝑑𝑥2 =  - 
𝑀

𝐸𝐼
 

𝑑2𝑦

𝑑𝑥2 +k2y = 0 

Solving the above equation by ordinary methods may be either difficult or impossible. The equation may 

then be made to finite differences where the analytical differential equation is replaced by appropriate 

finite difference equations. 

Usually the finite difference approximations for the first, second, third derivatives, etc., are obtained in 

two ways, namely 

1. Taylor’s series expansion 

2. Using a difference table 

Consider a function 

Y=f(x) 

Let the x coordinates be divided into equal interval Δx=h=xi - xi-1 

The corresponding y coordinates yi+1 ,yi ,yi-1 

The difference table is  

X Y Δy Δ2y 

xi-1 yi-1   

 

          yi+1 - 2yi+ yi+1 
xi yi yi- yi-1 

xi+1 yi+1 yi+1 - yi 

 

Frist derivative at point i 

For getting the various derivatives at point i,  

Δy= yi- yi-1 and Δy= yi+1 - yi 

 

The second derivatives  

Δ2y= (yi+1 - yi)-( yi- yi-1) 

      = (yi+1 - 2yi+ yi+1) 

w.k.tΔx=h  this region is subdivided into equal number of small divisions as h. 

Now the Frist derivative can be approximated as  
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𝑑𝑦

𝑑𝑥
at point i =  𝐿𝑖𝑚𝑖𝑡 ∆𝑥 → 0 

Δ𝑦

Δ𝑥
 

                   = 
𝑦𝑖+1 – 𝑦𝑖

ℎ
 

(
𝑑2𝑦

𝑑𝑥2) 𝑖 = 
𝑦𝑖+1 – 𝑦𝑖

ℎ
 

Second derivative at point i: 

(
𝑑2𝑦

𝑑𝑥2)at point i =  𝐿𝑖𝑚𝑖𝑡 ∆𝑥 → 0 
Δ2𝑦

Δ𝑥2 

Δ2y= (yi+1 - yi)-( yi- yi-1) 

      = (yi+1 - 2yi+ yi+1) 

(
𝑑2𝑦

𝑑𝑥2) 𝑖 = 
yi+1– 2yi+ yi+1

ℎ2  

7. Problem: 

Determine the deflection under load using finite difference method by sub dividing the length of 

beam into two region and four regions. The beam is simply supported at the ends with a center 

point load with uniform section. Exploit symmetry involved in the problems. What is your 

interference concerning accuracy as discretization becomes finer and finer. 

Given:  

Divide the beam into two elements 

Boundary condition at nodal points 

y1=0 

y3=0 

We know  

(
𝑑2𝑦

𝑑𝑥2)=  -
𝑀

𝐸𝐼
    ……(1) 

  EI(
𝑑2𝑦

𝑑𝑥2)=  - M 

To obtain y2, use Difference equation at point (2) 

(
𝑑2𝑦

𝑑𝑥2) 𝑖 = 
y1– 2y2+ y3

ℎ2 & M = 
𝑊𝑙

4
    ..….(2)    

Substitute values of (
𝑑2𝑦

𝑑𝑥2)& M in Eqn. (1) 

y1–  2y2 +  y3

ℎ2
= −

𝑊𝑙

4
𝑋 

1

𝐸𝐼
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Substitute boundary condition at Eqn. (2)     (ℎ2 =
𝑙2

4
) 

(2)    
0−2𝑦2+0

𝑙2

4

= −
𝑊𝑙

4
𝑋 

1

𝐸𝐼
 

                    2y2 =
𝑊𝑙

4
X 

1

𝐸𝐼
X 

𝑙2

4
 

Deflection at node 2  = y2  =   
W

32

l3

EI
 

Case (ii) Divide the beam into more elements.(4 elements) 

At Node: 2 

y1–  2y2 +  y3

ℎ2
= −

𝑊𝑙

8𝐸𝐼
 

Apply Boundary condition (y1 = 0 &ℎ=
𝑙

4
, 𝑀 = −

𝑊

8

𝑙

𝐸𝐼
) 

–  2y2 +  y3

(
𝑙

4
)

2 = −
𝑊

8

𝑙

𝐸𝐼
 

–  2y2 +  y3=−
𝑊

8

𝑙

𝐸𝐼
x

𝑙2

16
   …….. (3) 

 

At Node 3: 

y2–  2y3 + y4

ℎ2
= −

𝑊𝑙

4𝐸𝐼
 

Apply h =
𝑙

4
(y2=y4) 

–  2y2 +  2y3

(
𝑙

4
)

2 =
−𝑊

4

𝑙

𝐸𝐼
 

–  2y2 +  2y3=
−𝑊

4

𝑙

𝐸𝐼
x

𝑙2

16
 

Solving equation (3) and (4), -y3 = 
−𝑊

64

𝑙3

𝐸𝐼
 - 

𝑊

128

𝑙3

𝐸𝐼
 

y3 = 
3𝑊

128

𝑙3

𝐸𝐼
 

Substituting y3 in equation (4) 
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y3 = 
𝑊

42.7

𝑙3

𝐸𝐼
 

2y2 – 2x
3𝑊

128

𝑙3

𝐸𝐼
 - 

𝑊

64

𝑙3

𝐸𝐼
 

2y2 = 
−𝑊

64

𝑙3

𝐸𝐼
 + 

6𝑊

128

𝑙3

𝐸𝐼
 

2y2 = 
6𝑊𝑙3−2𝑊𝑙3

128𝐸𝐼
 

y2 = 
𝑊𝑙3

64𝐸𝐼
 

Therefore value of y3 at Node 3 is nearer to exact value. 

i.e  y3 = 
𝑊

42.7

𝑙3

𝐸𝐼
 

the exact value at node 3 is  

𝑊

48

𝑙3

𝐸𝐼
 

This shows that as the number of element increases, the answer approaches to exact value. 

8. Problem : 

A simple beam of span 5m carries a point load of 10kN mid span. Find the deflection at mid span 

using Macaulay’s method. (Nov/Dec 2013) 

Solution: 

(i) Find reactions at A and B 

Taking moment about A; RB x 5-10 x 2.5=0 

RB =5kN; Also RA+ RB=10 

RB =10-5=5kN; 

Consider a section X-X at distance x from B. 

Bending moment at X-X 

- Mx = EI(
𝑑2𝑦

𝑑𝑥2) = RB x –W(x-L/2)=5x2-10x(x-
5

 2
) 

EI(
𝑑2𝑦

𝑑𝑥2) = 5x-10(x- 2.5)    ……(1) 
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On first integration we get slope equation. 

EI(
𝑑𝑦

𝑑𝑥
) = 

5𝑥2

2
 + 

−10(𝑥− 2.5)2

2
 +C1 

On second Integration the get deflection equation 

EI y = 
5𝑥3

6
 + C1x - 

10(𝑥− 2.5)3

6
 +C2 

Boundary Condition: 

(i) When x=2.5 m; 
𝑑𝑦

𝑑𝑥
 = 0 

(ii) When x=0;y=0 

(iii) Applying boundary condition in (2) and (3) 

(2)   0 = 
5𝑥2.52

2
 - 0+C1 

C1= -15.625 

(3)  0= 
(0)3

6
 +C1x0+ C2 

C2= 0 

The deflection at x=2.5m 

Ely=
5(𝑥)3

6
 +C1x 

y=
1

𝐸𝐼
(

5(2.5)3

6
 +(-15.625x2.5) 

y=
1

𝐸2
(

5(2.5)3

6
 +(-15.625x2.5) 

y=
1

2𝑋104(-26.042) 

  =-1.302X10−3𝑚 

=-1.302mm 

Here, this strength of material problem is solved by using analytical method easily. 

Linear equation: displacement, u=a0+ a1x 

(Or) 
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Quadratic equation: 

Displacement, u=a0+ a1x+a2x
2 

By determining the unknown parameters a0, a1 and a2 we can find a solution with minimum error by 

applying boundary conditions. 

9. Write short notes on Boundary, initial and eigen value problem. 

BOUNDARY, INITIAL AND EIGEN VALUE PROBLEMS: 

Boundary Value Problem (BVP) 

A boundary value problem is one where the field variable (e.g., temperature or displacement) and 

possibly its derivatives are required to take on specified values on the boundary  

e.g., KA dT / dx   = Q, 

where K= Thermal conductivity,  

                    A = area of cross-section,  

                    Q = Heat flux.  

 

Boundary conditions:  @ x = 0,       T = T0 

                                  @ x = l,    -KA (dt/dx) = 0 

 

Initial Value Problem (IVP) 

An Initial value problem is one where the field variable and possibly its derivatives are specified initially 

(i.e., at time t=0). These are generally time dependent problems.  

Examples include: Unsteady heat conduction, Dynamic problems  
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Initial conditions: @ time t = 0    

i)   du/dt  = C0                                             where Velocity = du /dt                                                          ii) 

displacement u =  a0 

 

Eigen Value Problem (EVP) 

An eigen value problem is one where the problem is defined by a homogeneous differential equation 

that is one where the right hand side is zero. An important class of eigen value problems is the 

‘Vibration of Beams” or continuous systems.  

First mode shape     Second mode shape   Third mode shape 

 

 

 

Dimensionality 

Physical problems can be classified into 

 (i)   I dimensional  

(ii)   II dimensional  

(iii) III dimensional problems.  

 

 

 

 

 

 

 

Area        Volume 3D 

                  

Curves 
        Area 2D 

         Points         Line 1D 

        Boundary                Geometry Domain 
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I-D PROBLEMS:- 

When the geometry, material properties and field variables such as displacement, temperature, pressure 

etc can be described in terms of only one spatial co-ordinate we can go in for one-dimensional modeling  

 

2D PROBLEMS:- 

When the geometry and other parameters are described in terms of two independent co-ordinates we go 

in for two-dimensional modeling.  

 

3D PROBLEMS:-  

If the geometry, material properties and other parameters of the body can be described by three 

independent spatial co-ordinates, we can discretize the body using 3 dimensional modeling.  
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Exact and approximate solutions: 

 An exact solution satisfies the differential equation at every point in the domain and the 

boundary conditions on the boundary  

 An approximate solution satisfies the boundary conditions completely and as closely as possible 

the differential equation   

 

 

 

 

NUMERICAL SOLUTION OF BVPs 

(i)    Choose a trial solution  U(x)  for   U(x) 

(ii)   Select a criterion for minimising the error 

U(x) can be a trigonometric function such as  Asinx 

or a logarithmic function log x 

or a hyperbolic function 

or polynomial functions  

 

1. Methods of weighted residuals (WRM) which are applicable when the governing equations are 

differential equations. 

2. Ritz variational method which is applicable when the governing equations are variational 

(integral) equations with an associated quadratic functional. 

10. Explain in detail about the procedure of Weighted residual method. 

WEIGHTED RESIDUAL METHOD: 

It is a powerful approximate procedure applicable to several problems. For non – structural problems, 

the method of weighted residuals becomes very useful.  

)4(0)(

)(





























xA
dx

dx

du
xAd

E 

3

4

2

321  xa + a + x a + a = )( xxU
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The WRM is a generalization of Ritz method. 

The WRM criteria seek to minimise the error involved in not satisfying the governing differential 

equations.   

The most popular methods are 

(i) The Collocation method (or) Point Collocation Method 

(ii) The Sub -Domain method (or) Sub -Domain Collocation method          

(iii) The Least squares method. 

(iv) The Galerkin method. 

General Procedure for solving weighted residual method 

Step 1: Assume the trial solution as y 

Step 2: Reconstruct the trial solution in terms of trial function by applying the boundary conditions. 

Step 3: Obtain the residual function by back substituting the reconstructed trial solution the differential 

equation. 

Step 4: Select the solution criteria. 

Collocation Method 

 For each undetermined coefficient  ai,  choose a point xi in the domain and at each such point 

called as collocation point   force the residual to be exactly zero  

R=0 

ie.  The collocation points may be located anywhere on the boundary or in the domain.  

Residuals are set to zero at n different locations Xi, and the weighting function w. 

 W R (xi; a1, a2, a3… an) dx = 0 

Where 

---- Domain 

R---- Residual 

W----Weighing function 

The weighing function W is denoted as (x-xi) 
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W=(x-xi) 

xi ---- collocation points and are selected by discretization of analyst. 

So, 

∫ δ (x − xi)=1 

And  

R (xi; a1, a2, a3… an) = 0 

The chosen points are called collocation points.  They may be located any were on the boundary or in 

the domain.   

The Sub-Domain Method 

For each undetermined parameter  choose an interval  x,  in the domain.  Then force average of the 

residual in each interval to be zero. 

 

 

 

 

 

 

Here the weighing function is made unity over a portion of the domain and zero elsewhere. 

So, 

W1={
1 𝑓𝑜𝑟 𝑥 𝑖𝑛 𝐷1

0 𝑓𝑜𝑟 𝑥 𝑛𝑜𝑡 𝑖𝑛 𝐷1
 

W2={
1 𝑓𝑜𝑟 𝑥 𝑖𝑛 𝐷2

0 𝑓𝑜𝑟 𝑥 𝑛𝑜𝑡 𝑖𝑛 𝐷2
 

Wn={
1 𝑓𝑜𝑟 𝑥 𝑖𝑛 𝐷𝑛

0 𝑓𝑜𝑟 𝑥 𝑛𝑜𝑡 𝑖𝑛 𝐷𝑛
 

Where D---- Domain 

 

0 =  )( 
 x

1

1 x1

dxxR




0 =  )( 
 x

1

2 x2

dxxR




0 =  )( 
 x

1

n xn

dxxR



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LEAST SQUARES TECHNIQUE: 

In this method we minimize with respect to each undetermined coefficient the integral of the square of 

the residue over the entire domain 

 

 

 

 

 [R (x; a1, a2, a3… an)]2 dx = minimum. 

THE GALERKIN METHOD 

For each undetermined parameter   we require that a weighted average of R(x) over the entire domain be 

zero.  The weighting functions are the trial functions   associated with the generalised coefficients 

 

 

wi = Ni (x) 

Ni (x) ----- Trial function 

Ni (x) [R (x; a1, a2, a3… an)]2 dx = 0,                        i = 1, 2, 3, …n. 

GENERAL WRM   

           

 The Collocation method  - dirac delta function 

 The Sub-Domain method - Unity 

 The Least squares method - Residue 

 The Galerkin method – coefficient of the undetermined coefficients in the trial solution 

 

 

 

0 =dx  (x)  a  / 2

2

1

1 R

0  =dx      )  a R/ )(( 1

2

1

 xR

0 =dx  (x)  )(

2

1

ixR 

0 =dx  (x)  w)( iXR

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11. The governing differential equation for the fully developed laminar flow is given by 

 µ
𝑑2𝑦

𝑑𝑥2+ρg cosө=0. If boundary conditions are 
𝑑𝑢

𝑑𝑥
x=0 =0,   u (L) =0. 

Find the velocity distribution, u (x). 

Given:  µ
𝑑2𝑦

𝑑𝑥2+ρg cosө=0 

Boundary condition :
𝑑𝑢

𝑑𝑥
x=0 =0,   u (L) =0 

To find: velocity distribution. 

Solution: 

Assume trial function u(x) = a0 + a1x + a2x
2 ----1 

First boundary condition – du/dx =  at x = 0 

du/dx = a1+ 2a2x 

at x= 0; du/dx = 0, 

a1 = 0 

Second boundary condition; 

x=L, u(x) = 0 

u(x) = a0 +a1x +a2x
2 

a0 + a1L + a2L
2 = 0 

sub a1 = 0 

a0 + a2L
2 = 0 

a0 = -a2L
2 

sub a0 and a1 value in equation 1 

u(x) = -a2L
2 + 0 + a2x

2 

u(x) = a2 [x
2 – L2] --- 2 

du/dx=a2[2x] 

d2u/dx2=a2 

W.K.T  

Residual, R = µ
𝑑2𝑦

𝑑𝑥2+ρg cosө=0 

µ(2a2) + ρgcosө = 0 

2µ(a2)  = - ρgcosө 

a2 = -ρgcos ө / 2µ 

sub a2 value in eqn 2 
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u(x) = ρgcos ө / 2µ [L2 – x2] 

velocity distribution; u(x) = ρgcos ө / 2µ [L2 – x2] 

 

12. Find the solution for the following differential equation. 

E I 
𝑑4𝑢

𝑑𝑥4 -q0=0. 

The boundary conditions are u (0)=0, 
𝑑𝑢

𝑑𝑥
 (0) =0, 

𝑑2𝑢

𝑑𝑥2(L)=0, 
𝑑3𝑦

𝑑𝑥3(L)=0L)  (April/May 2011) 

Given: 

The governing differential equation: 

E I 
𝑑4𝑢

𝑑𝑥4 -q0=0. 

Boundary condition:u (0)=0, 
𝑑𝑢

𝑑𝑥
 (0) =0, 

𝑑2𝑢

𝑑𝑥2(L)=0, 
𝑑3𝑦

𝑑𝑥3(L)=0L) 

Solution: 

Assume trial function, let u(x) = a0 + a1x + a2x
2 + a3x

3 + a4x
4 + ………. 1 

First boundary condition at x = 0, u(x) = 0 

a0+0+0+0 = 0 

a0= 0 

Second boundary condition, x=0, du/dx = 0. 

du/dx = 0 + a1 + 2a2x + 3a3x
2 + 4a4x

3 

a1+0+0+0 = 0 

a1 = 0 

Third boundary condition, x = L, d2u/dx2 = 0. 

d2u/dx2= 2a2 + 6a3x + 12a4x
2 

0 = 2a2 + 6a3L + 12a4L
2 

a2 = -[3a3L + 6a4L
2] 

Fourth boundary condition, x = L, d3u / dx3 = 0 

d3u / dx3 = 0 + 6a3 + 24 a4 x 

0 = 6a3 + 24 a4 x 

6a3 = -24a4L 

a3 =-4a4L 

sub a0, a1, a2 and a3 value in eqn 1 
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u(x) = 0 + 0 – [3a3L + 6a4L
2]x2 – 4a4Lx3 + a4x

4 

 = - [3a3L + 6a4L
2]x2 – 4a4Lx3 + a2x

4 

 = - [3(-4a4L)L + 6a4L
2]x2 – 4a4Lx3 + a4x

4 

 = 12a4L
2x2 – 6a4L

2x2 – 4a4Lx3 + a4x
4 

 = a4[12L2x2 – 6L2x2 – 4Lx3 + x4] 

 =a4[6L2x2 – 4Lx3 + x4] 

u(x) = a4[6L2x2 – 4Lx3 + x4] -----2 

du/dx = a4[12L2x – 12Lx2 + 4x3] 

d2u/dx2 = a4[12L2 – 24Lx + 12x2] 

d3u/dx3 = a4[24x-24L] 

d4u/dx4 = 24a4 

W.K.T 

Residual R = E I 
𝑑4𝑢

𝑑𝑥4 -q0=0. 

24EIa4 – q0 = 0 

a4 = q0 / 24EI 

Sub a4 value in eqn 2 

U(x) = q0/24EI[x4-4Lx3+6L2x2] 

 

13. The following differential equation is available for a physical phenomenon   

A E 
𝑑2𝑢

𝑑𝑥2+a x=0 

The boundary conditions are u (0)=0, A E 
𝑑𝑢

𝑑𝑥
   x=L =0. (Nov/Dec 2013) 

Given:A E 
𝑑2𝑢

𝑑𝑥2+a x=0 

Boundary condition: u (0)=0, A E 
𝑑𝑢

𝑑𝑥
   x=L =0 

Solution:  

Assume trial function, let u(x) = a0+ a1x + a2x
2 + a3x

3 - ---- 1 

First boundary condition, x= 0, u(x) = 0 

a0+0+0+0 = 0 

a0 = 0 

second boundary condition, x = L, AE du / dx = 0 

du/dx = 0 + a1 + 2a2x + 3a3x
2 

a1 = -(2a2L + 3a3L
2) 
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sub a0& a1 value in eqn 1, 

u(x) = 0 + - (2a2L + 3a3 L
2)x + a2x

2 + a3x
3 

 = -2a2Lx – 3a3L
2x + a2x

2 + a3x
3 

 = a2[x
2 – 2Lx] + a3[x

3 – 3L2x] 

u(x) = a2[x
2 – 2Lx] + a3 [x

3 – 3L2x]----2 

W.K.T 

Residual R = A E 
𝑑2𝑢

𝑑𝑥2
+a x=0—3 

du/dx = a2[2x-2L] + a3[3x2 – 3L2] 

d2u/dx2 = 2a2 + 6a3x 

Sub d2u/dx2 value in eqn 3 

R = AE(2a2 + 6a2x) + ax - - 4 

From Galerkin’s technique 

 

L

0

0Rdxwi  - - - 5 

From eqn 2 w.k.t 

w1 = (x2 – 2Lx); w2 = (x3 – 3L2x) 

Sub w1& w2 value in eqn 5 

0]})62()[3(])62()[2{(
0

32

23

32

2  dxaxxaaAExLxaxxaaAELxx

L

Integrating the above eqn with respect to x 

0
31866

2212462

2222

3

2

2
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3
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2

22
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33

3

2

2

0
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















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Solving eqn we get  

a3 = -a / 6AE 

sub a3 value in eqn we get  

a2 = 0 

sub a2& a3 value in eqn – 2 

u(x) = a/6AE [ 3L2x – x3] 

 

14. The governing differential equation for the long cylinder of radius R with heat generation 

q0 is given by 

𝑑2𝑇

𝑑𝑟2+
1

𝑟

𝑑𝑇

𝑑𝑟
+

𝑞0

𝑘
=0 

The boundary conditions are T (R) = Tw 

q0πR2L= (-k) (2π R L) 
𝑑𝑇

𝑑𝑟
r=R    

Find the temperature distribution T as a function of radial location r. 
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Given: 

𝑑2𝑇

𝑑𝑟2+
1

𝑟

𝑑𝑇

𝑑𝑟
+

𝑞0

𝑘
=0 

Boundary condition: q0πR2L= (-k) (2π R L) 
𝑑𝑇

𝑑𝑟
r=R    

Temperature distribution T(r), 

Solution: 

Assume trial function, T = a0 +a1(r –R) + a2(r –R)2 ----1 

First boundary condition, r =R, T = Tw 

Tw = a0 + a1(R-R) + a2(R-R)2 

a0 = Tw 

Second boundary condition: q0πR2L= (-k) (2π R L) 
𝑑𝑇

𝑑𝑟
r=R    

dT/dr = 0 + a1 (1-0) + a22(r-R)(1-0) 

 = a1 + 2a2(r-R) 

 = a1 + 2a2(R-R) 

 = a1 

W.K.T 

 -k2πRL dT/dr = q0πR2L 

 -k2πRL(a1) = q0πR2L 

a1 = -q0R/2k 

sub a0& a1 in eqn 1 

T = Tw – q0R / 2k (r –R) + a2 (r – R)2 -----2 

W.K.T, residual R = 
𝑑2𝑇

𝑑𝑟2+
1

𝑟

𝑑𝑇

𝑑𝑟
+

𝑞0

𝑘
=0 ----3 

dT/dr = 0 – (q0R/2k) + a22(r-R) 

d2T/dr2= 0 + 2a2 (1 – 0) 

 = 2a2 

R = 2a2 + q0/k + 1/r (-q0R/2k + 2a2(r-R)) -----4 

Galerkin’s technique 

 

L

0

0Rdrwi  

 

R

drRarakRqkrqraRrL
0

22002

2 0]222//2[)(2  ----5 
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Apply Bernoull’s formula: 

  ....'''''' 4321 vuvuvuuvuvdx  

u – differentiate; v – integrate 

u = (r – R)2 

v = )(2
2

2 2
00

2 Rra
k

Rq

k

rq
ra   

Differentiating u with respect to r,  

u – (r-R)2;  u’ – 2(r-R);  u” -2;  u’” -0. 

Integrating v with respect to r, 

v = )(2
2

2 2
00

2 Rra
k

Rq

k

rq
ra   

v1 = Rra
r

a
k

Rrqr

k
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a 2

2
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2
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2

2
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6

2
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r

k
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Now sub the u & v value in eqn we get 

  ....'''''' 4321 vuvuvuuvuvdx  
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Sub the value in eqn 5 we get 
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sub a2 value in eqn 2,  
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T-Tw = q0/4k[R2-r2] 

15. The differentials equation of a physical phenomenon is given by, 
𝑑2𝑦

𝑑𝑥2+500x2=0, 0<x<1 Trial 

function, y=a1(x-x4), boundary conditions are, y (0)=0; y (1)=0 Calculate the value of the 

parameter a1 by the following methods: (i) Point collocation; (ii) subdomain collocation; 

(iii) least squares; (iv) galerkin.(Nov/Dec 2009) 

Given:
𝑑2𝑦

𝑑𝑥2+500x2=0 ------1 

Boundary condition – y(0) = 0; y(1) =0 

Trial function - y=a1(x-x4) 

To find: (i) Point collocation;(ii) subdomain collocation; (iii) least squares; (iv) galerkin. 

First boundary condition; x = 0, y = 0; a1 = 0;  

Second boundary condition; x= 1, y = 0, a1 = 0 

Point collocation method: 
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y = a1 (x – x4) 

dy/dx = a1(1 – 4x3) 

d2y/dx2 = -12a1x
2 

sub d2y/dx2 value in eqn – 1 

R = -12a1x
2 + 500x2 - - - - 2 

Let sub x = 1/2 in eqn 2 

R = -12a1(1/2)2 + 500(1/2)2 = 0 

-12a1(1/4) + 500(1/4) = 0 

-3a1 + 125 = 0 

a1 = 41.66 

y = 41.66(x – x4) 

Subdomain collocation method: 

 

1

0

0Rdx  

Sub R value in above eqn 

 

1

0

22

1 0)50012( dxxxa

 
-12a1[x

3/3]0
1 + 500[x3/3]0

1 = 0 

-12a1/3[1-0]+500/3[1-0] = 0 

-12a1/3 + 500/3 = 0 

-12a1 = -500 

a1 = 41.66 

y = 41.66(x – x4) 

Least square method: 

I =  

1

0

2 0dxR  

 

1

0

222

1 0)50012( dxxxa
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a1 = 41.66 

y = 41.66(x – x4) 

Galerkin’s method: 

 
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-3a1+125+1.714a1-71.428 = 0 

-1.286a1 = -53.572 

a1 = 41.66 

y = 41.66(x – x4) 

16. The differential equation of a physical phenomenon is given by 
𝑑2𝑦

𝑑𝑥2+500x2=0; , 0<x<1 by 

using the trial function, y= a1(x+x3)+ a2(x-x5), calculate the values of the parameters a1 and  

a2by the following methods; Point collocation; (ii) subdomain collocation; (iii) least 

squares; (iv) galerkin. The boundary conditions are: y(0) = 0 ,  y(1) = 0. (Nov/Dec 2009) 

Given: 
𝑑2𝑦

𝑑𝑥2+500x2=0 ------1 

Boundary condition – y(0) = 0; y(1) =0 

Trial function - y= a1(x+x3)+ a2(x-x5) 

To find: (i) Point collocation;(ii) subdomain collocation; (iii) least squares; (iv) galerkin. 
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First boundary condition; x = 0, y = 0; a1 = 0;  

Second boundary condition; x= 1, y = 0, a1 = 0 

Residual R: 

y = a1(x-x3) + a2(x-x5) 

dy/dx = a1(1-3x2)+a2(1-5x4) 

d2y/dx2 = a1(-6x)+a2(-20x3) 

d2y/dx2=-6a1x-20a2x
3 

sub d2y/dx2 in eqn 1 

R = -6a1x-20a2x
3+500x2 

Interval 0 to 1 is divided into two domain 0 to ½ and ½ to 1 

Point collocation method: 

R = -6a1x-20a2x
3+500x2 = 0 ---3 

Domain 1 Limit 0 – 1/2 = let it be x = 1/3 

Put x = 1/3 

R = -6a1(1/3)-20a2(1/3)3+500(1/3)2=0 

-2a1-20a2(1/27)+(500/9) = 0 

2a1+0.741a2 = 55.55 

a1 + 0.3705a2= 27.775 ----4 

Domain 2 limit  1/2 – 1  let us take x = 2/3 

R = -6a1(3/3)-20a2(2/3)3+500(2/3)2=0 

-4a1-20a2(8/27)+(2000/9) = 0 

-4a1-5.925a2 = -222.22 

 a1 + 1.481a2= 55.555 ----5 

solvingeqn 4 & 5 

a2 = 25; a1 = 18.53 

y = 18.53(x-x3) + 25 (x – x5) 

 

Subdomain collocation method: 

 

2/1

0

0Rdx

 

Domain 1 limits 0 - ½  
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Sub R value in above eqn 
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Integrating the above equation 
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-0.75a1-0.3125a2+20.83 = 0 

a1 + 0.4166a2= 27.773 ----6 

Domain 2 limits ½ - 1 
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Sub R value in above eqn 
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-2.25a1-4.6875a2+145.83=0 

a1 + 2.083a2= 64.813 ----7 

solvingeqn 6 & 7 

a1 = 18.5; a2 = 22.23 

y = 18.50(x-x3) + 22.53 (x – x5) 

Least square method: 

 

Domain 1 limit 0 – 1/2 
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I =  
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2 0dxR

 

It can be written as  
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Sub eqn 9 in eqn 8  
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a1 + 0.5a2= 31.25 ----10 

Domain 2 limit 1/2 – 1 

I =  

1

2/1

2 0dxR

 

It can be written as  

dx
a

R
R

a

I

1

1

2/12 







 --------11 

R = -6a1x-20a2x
3+500x2 = 0 

3

2

20x
a

R





--------12 



UNIT-I / INTRODUCTION  P a g e  | 36 
 

ME8692 FINITE ELEMENT ANALYSIS  
  
 

Sub eqn 12 in eqn 11  
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a1 + 2.438a2= 70.564 ----13 

solvingeqn 10 & 13 

a1 = 21.11; a2 = 20.28 

y = 21.11(x-x3) + 20.28 (x – x5) 

Galerkin’s method: 

Domain 1 limit 0 – 1/2 
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0.25a1-0.125a2+7.81+0.038a1+0.022a2-1.29 = 0 

-0.2125a1-0.1027a2+6.5135 = 0 
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a1 + 0.4832a2= 30.651 ----14 

Domain 2 limits ½ - 1 

 
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y = w2 =x – x5 

Residual,  R = -6a1x-20a2x
3+500x2 = 0 
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1.75 a1– 3.875 a2+117.187+0.850 a1+2.215 a2– 62.255 = 0 

-0.9a1-1.659a2+54.932 = 0 

a1 + 1.843a2= 61.035 ----15 

Solving eqn 14 & 15 

a1 = 19.862; a2 = 22.34 

y = 19.862(x-x3) + 22.34 (x – x5) 

 

17. The differential equation of a physical phenomenon is given by 
𝑑2𝑦

𝑑𝑥2-10x2=5. Obtain two 

term galerkin solution by using the trial functions: N1(x)=x(x-1); N2(x)=x2(x-1); 0<x<1. 

boundary conditions are, y (0)=0; y (1)=0. 

Given:
𝑑2𝑦

𝑑𝑥2-10x2=5 - - 1 

Trial functions, N1(x)=x(x-1); N2(x)=x2(x-1) 

    y = a1x(x-1) + a2x
2(x-1) - - 2 

BC - - y(0) = 0; y(1) = 0 

To find: approximate solution using Galerkin’s method. 

Solution: 

Trial function  
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y = a1x(x-1) + a2x
2(x-1) 

when x = 0; y=0 

x=1; y=0 

Residual R 

R =  y = a1x(x-1) + a2x
2(x-1) 

y = a1(x
2-x)+a2(x

3-x2) 

dy/dx = a1(2x-1)+a2(3x2-2x) 

d2y/dx2 = a1(2)+a2(6x-2) 

R = 2a1 + 6a2x – 2a2 – 10x2 – 5-----3 

Using Galerkin method to find the solution for the problem. 

 

1

0

0Rdxwi

 

Here w1 = x(x-1) 

 w2 = x2(x-1)  

 

 

 

1

0

2

221 0)510262)(1( dxxaxaaxx ---4 

 

1

0

2

221

2 0)510262)(1( dxxaxaaxx ----5 

Integrating the above equation 4 and 5 we get 
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a1+0.5a2 = 4 ----6 
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a1+0.8012a2 = 4.518-----7 

solvingeqn 6 & 7 

a2 = 1.719; a1 = 3.140 

y = 1.719x3 + 1.421x2 – 3.140 x 

 

18. The differential equation of a physical phenomenon is given by 
𝑑2𝑦

𝑑𝑥2+y=4x, 0<x<1. 
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19. The boundary conditions are: y(0) = 0 , : y(1) = 0. Obtain one term approximate solution by 

using galerkin’s method of weighted residuals.(May/June 2014). 

 

Given:
𝑑2𝑦

𝑑𝑥2+y=4x --------1 

BC, y(0) = 0; y(1) = 1 

To find: approximate solution using Galerkin’s method 

Solution: 

Assume trial function; 

y = a1x(x-1)+x 

when x = 0; y = 0 

x = 1; y =1 

The give equation (trial function) satisfies the boundary condition. 

R =  y = a1x(x-1) + x --- 2 

y =  a1(x
2-x) + x 

dy/dx = a1(2x – 1) + 1 

d2y/dx2 = 2a1 

sub d2y/dx2 in eqn 1 

2a1 + y = 4x 

Sub y value 

2a1 +a1x(x-1)+x = 4x 

R = 2a1 + a1x(x – 1) + x – 4x 

Using Galerkin method to find the solution for the problem. 

 

1

0

0Rdxwi  - - 3 

 

1

0

11 0)4)1(2)(1( dxxxxxaaxx  
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a1 = 0.830 

y = 0.830x2 + 0.17x 

 

20. Find the deflection at the centre of a simply supported beam of span length ‘l’ subjected to 

uniformly distributed load through out its length as shown in fig. using (i) Point 

collocation;     (ii) subdomain collocation; (iii) least squares; (iv) galerkin. 

 
Solution: 

EI d4y/dx4 – ω = 0, 0≤x≤l - -  - 1 

BC – y = 0 at x = 0 & x = l when y is the deflection 

EI d4y/dx4 = 0 at x =0 and x=l 

Where, EI d4y/dx4  = M (bending moment) 

I = moment of inertia of the beam 

E = young’s modulus. 

Let us assume trial function 

y = a sin (πx/l) -  -2 

d4y/dx4 = aπ4/l4 sin(πx/l) – 3 

subeqn 3 in 1 
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EI (aπ4/l4sin(πx/l)) – ω = 0 

The above equation satisfies the boundary condition 

l

x

l

a

dx

yd

l

x

l

a

dx

yd

l

x

l

a

dx

yd

l

x

l

a

dx

dy









sin.

cos.

sin.

cos.

4

4

4

4

3

3

3

3

2

2

2

2









 

Sub eqn 3 in eqn 1 

 


















l

x

l

a
EIRsidua

l

x

l

a
EI

sin.,Re

0sin.

4

4

4

4

 

Point collocation method: 

 R = EI (aπ4/l4sin(πx/l)) – ω = 0 

 EI (aπ4/l4sin(πx/l)) = ω 

Take x = l/2 

EI (aπ4/l4sin(πx/l)) = ω 

EI

l
a

l

a
EI

l

ll

a
EI

4

4

4

4

4

4

2
sin
























 

Substitute ‘a’ value in the trial function 

y = ωl4/π4EI sin (πx/l) 

Sub domain collocation method: 

 

1

0

0Rdx

 

 R = EI (aπ4/l4sin(πx/l)) – ω = 0 
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a = ωl4/2π3EI 

a = ωl4/62EI 

y = ωl4/62EI sin (πx/l) 

Least square method 

I =  

1

0

2 0dxR
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a = 4ωl4/π5EI  

 y = 4ωl4/π5EI sin (πx/l) 

Galerkin’s method: 
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wi = y = a sin(πx/l) 
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a = 4ωl4/π5EI  

y = 4ωl4/π5EI sin (πx/l) 

21. Consider a 1mm diameter, 50 mm long aluminum pin-fin  as shown fig. used to enhance 

the heat transfer from a surface wall maintained at 300˚C. the governing differential 

equation and the boundary conditions are given by  

k
𝒅𝟐𝑻

𝒅𝒙𝟐=
𝒑 𝒉

𝑨
 (T-T∞) 

T (0) =Tw=300˚C 

𝒅𝟐𝑻

𝒅𝒙𝟐L=0 (insulated tip) 

Where, k=thermal conductivity, p= perimeter, A= cross-sectional area,  

h= convective heat transfer coefficient, Tw=wall temperature, T∞=ambient 

temperature.Let, k=200W/m˚C for aluminum, h=20 W/m2˚C, T∞=30˚C.estimate the 

temperature distribution in the fin using the galerkin weighted residual method. 

 
Given: 

               Diameter, d=1mm=1x10-3 

Length , l= 50mm= 50x10-3m 

          Wall temperature, Tw=300˚C 

Governing different equation, K
𝑑2𝑇

𝑑𝑥2=
𝑝 ℎ

𝐴
(T-T∞) 

T(0)=Tw=300˚C 
𝑑𝑇

𝑑𝑥
(L)=0 

 Thermal conductivity, k=200w/m˚C. 

Heat transfer co-efficient h = 20 W/m20C 

Ambient temperature, T∞ = 300C 



UNIT-I / INTRODUCTION  P a g e  | 46 
 

ME8692 FINITE ELEMENT ANALYSIS  
  
 

To find:Temperature distribution using Galerkin’s method. 

Solution: 

       Assume a trail solution. Let. 

T(x)=a0+a1x+a2x
2 

The boundary conditions are, T(0)=Tw=300˚C 
𝑑𝑇

𝑑𝑥
(L)=0 

              From equation (a), x=0, T=300˚C 

           Applying these values in equation (1), 

300=a0 

a0=300 

           From equation (b), x=L, 
𝑑𝑇

𝑑𝑥
=0 

             Differential equation (1), 
𝑑𝑇

𝑑𝑥
=a1+a2.2x  -------------2 

                                                     0=a1+a2(2L) 

a1 = -2La2 

          Substitute a0 and a1 values in equation (1) 

T(x)=a0+a1x+a2x
2 

T(x) = 300 + (-2a2L)x+a2x2 

T(x) = 300 + a2(x
2-2Lx)------- 3 

w.k.t, kd2T/dx2 = Ph/A (T - T∞) 

200 d2T/dx2 = π(1*10-3)*20/(π/4)(1*10-3)2  (T – 30)            [here p=πD] 

d2T/dx2 = 400 (T – 30) - - - - - 4 

substitute T value from eqn 3 

d2T/dx2 = 400 (300 + a2(x
2-2Lx)-30) 

=400[270+a2(x
2-2Lx)] - - - 5 
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From eqn 2, dT/dx = a1+a2(2x) 

d2T/dx2 = 2a2 -- - - -- 6 

substitute d2T/dx2value in equation 5 

2a2= 400[270+a2(x
2-2Lx)] 

2a2- 400[270+a2(x
2-2Lx)] = 0 

             Take residual, R=2a2-400[270+a2(x
2

-2Lx) 

 W(x) = x2-2Lx 
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Galerkin solution, T(x)=300+38572.80(x2-2Lx) 
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22. Write short notes on Variational Formulation and Ritz Technique. 

VARIATIONAL FORMULATION: 

Variational (Weak) Form of the weighted residual statement: 

The general weighted residual statement is  

∫ w R dx =0 

In this vibrational method, integration is carried out by parts. It reduces the continuity requirement on 

the trail function assumed in the solution. So it is referred to as the weak form. In this method, it is 

possible to have a wider choice of trial function. 

Characteristics of weighted residual statement: 

 Weighted residual statement can be developed for any form of differential equations like linear 

non-linear, ordinary, partial, etc. 

 The weighted residual statement is developed only for differential equation and it is not suitable 

for boundary conditions. 

 The trial solution should satisfy all the boundary conditions and it should be differentiable as 

many times as needed in the original differential equation. 

RITZ TECHNIQUES: 

Rayleigh-Ritz Method: 

Rayleigh-Ritz Method is a vibrational approach and it is an integral approach method which will be very 

much helpful in solving complex structural problems, found in FEA. This method is mostly used for 

solving solid mechanics problems. This method is possible only if a suitable functional is available. 

Otherwise, Galerkin’s method of weighted residual is used. 

Rayleigh-Ritz Method is a vibrational method because that makes use of vibrational principle, such as 

the principles of virtual work and the principle of minimum potential energy in solid and structural 

mechanics to determine the approximate solutions of the problem. 

Total potential energy of the structure is given by  

Π = U-H 

Where, 

Π – Total potential energy 

H – External potential energy (or) work done by external forces 



UNIT-I / INTRODUCTION  P a g e  | 49 
 

ME8692 FINITE ELEMENT ANALYSIS  
  
 

U – Internal potential energy (or) strain energy 

In Rayleigh ritz method, the approximating functions must satisfy the boundary conditions and should 

be easy to use. 

Polynomials are used some times, otherwise sine and cosine functions will be used as approximating 

functions. 

For representing exact functions, the following two terms are used. 

y=a0+ a1x+a2x2+a3x
3+…. 

y= a1sin(
𝛱𝑥

𝑙
) + a2sin (

3𝛱𝑥

𝑙
) +….. 

Where, 

a0, a1, a2 ---- unknown Riz parameter. 

The following conditions must satisfy the approximating function: 

 It should satisfy the geometric boundary conditions. 

 The function must have atleast one Ritz parameters. 

Advantages of the weak form 

 Order of the differential equation becomes half of that in the original equation. 

 Hence continuity requirements on the assumed solution is reduced. 

 Lower order polynomial can be assumed for the approximate solution. 

 The Natural Boundary condition becomes embedded in the weak form 

 Hence the trial solution needs to satisfy only the essential boundary condition 

23. A beam AB span ‘l’ simply supported at ends. And carrying a concentrated load W at the 

centre ‘C’ as shown in fig. determine the deflection at mid span by using Rayleigh -Ritz 

method and compare with exact solutions. 

 
Solution:we know that,  

π=U-H 

U=strain energy 



UNIT-I / INTRODUCTION  P a g e  | 50 
 

ME8692 FINITE ELEMENT ANALYSIS  
  
 

H=work done external force 

The strain energy u of beam due to loading is given by, 

U=
𝐸 𝐼 

2
∫ (

𝑑2𝑢

𝑑𝑥2

1

0
)2dx 

from equation in previous example, we know that, 

U=
𝐸 𝜋𝐼 

4 𝑙3 [a1
2+8la2

2] 

Work done by external force, H=W ymax 

Defelction, y=a1sin 
𝜋𝑥

𝑙
+a2sin

3𝜋𝑥

𝑙
 

In the span, deflection is maximum at x=
𝑙

2
 

2

3
sinsin

2
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2

3

sin2sin

21

21max





aa

l

l

a
l

l

ay




 

ymax=a1-a2 

H=W(a1-a2) 

Substitute U and H values in equation 

π=
𝐸 𝜋𝐼 

4 𝑙3 [a1
2+8la2

2]-W(a1-a2) 

For stationary value π, the following condition must be satisfied 
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 W
EI

l
a

Wa
l

EI

Wa
l

EI

Wa
l

EI

a

aa

4

3

1

13

4

13

4

13

4

1

21

2

2

0
2

02
4

0  and    0








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
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
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Similarly,  
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yMax=a1-a2 

a1=
2 𝑊 𝑙

𝐸𝐼 𝜋4

3
 

a2=
−2 𝑊 𝑙

8 𝑙𝐸𝐼 𝜋4

3
 

Ymax=
𝑊𝑙3

48.1 𝐸𝐼
 

We know that, simply supported beam  subjected to point load at center, maximum deflection is , 

Ymax=
𝑊𝑙3

48 𝐸𝐼
 

From equation, we know that. Exact solution and solution by using Rayleigh-ritz method are 

almost same. In order to get accurate result, more terms in fourier series should be taken.  

24. A simply supported beam subjected to uniformly distributed load over entire span and it is 

subjected to a point load at the center of the span. Calculate the bending moment and 

deflection at midspan by using rayleigh-ritz method and compare with exact solution. 

(May/June 2013, Nov/Dec 2014). 

 
To find :1. Deflection and bending moment at midspan. 

              2. compare with exact solution. 

Solution: Defelction, y=a1sin 
𝜋𝑥

𝑙
+a2sin

3𝜋𝑥

𝑙
 

Total potential energy of the beam is given by,  

π=U-H 

 

The strain energy U of the beam due to bending is given by,  

U = dx
dx

ydEI
l 2

0

2

2

2  







 

From equation in  

U=
𝐸 𝐼𝜋4

4 𝑙3 [a1
2+8la2

2] 

Work done by external force, H=∫ 𝜔
1

0
 y dx + W ymax 

From equation ∫ 𝜔
1

0
 y dx=

2 𝜔 𝑙

𝜋
(a1+

𝑎2

3
) 

2

3
sinsin

2
sin
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sin2sin
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ymax=a1-a2 

substituting the above value in equation 

H=
2 𝜔 𝑙

𝜋
(a1+

𝑎2

3
)+W(a1-a2) 

substituting the U & H value in equation 
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For stationary value π, the following condition must be satisfied 
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ymax= a1-a2 

Substitute a1 and a2 value in the above equation 
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ymax= 4

3

5

4 02.298.3
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
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l
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W.k.t, simply supported beam subjected to uniformly distributed load, max deflection is, 

ymax= 
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
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Simply supported beam subjected to point load at centre, max deflection is 
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Total deflection 
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l
 

25. A simply supported beam subjected to uniformly distributed load over entire span. 

Determine the bending moment and deflection at midspan by using rayleigh-ritz method 

and compare with exact solutions. 

 

To find:  we know that, for simply supported beam, the fourier series, 

Y=∑ 𝑎 𝑠𝑖𝑛∞
𝑛=1.3

𝜋𝑛𝑥

𝑙
 is the approximating function. 

To make this series more simple let us consider only two terms. 

Deflection, y=a1sin
𝜋𝑥

𝑙
+a2sin

3𝜋𝑥

𝑙
 

Where, a1, a2 are Ritz parameters. 

We know that, 

Total potential energy of the beam, π=U-H 

H=work done external force 

The strain energy, U, of the beam due to bending is given by, 

U=
𝐸 𝐼

2
∫ (

𝑑2𝑦

𝑑𝑥2

1

0
)2dx 

𝑑𝑦

𝑑𝑥
=a1cos

𝜋𝑥

𝑙
(

𝜋

𝑙
)+a2cos

3𝜋𝑥

𝑙
(

3𝜋

𝑙
) 
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The final equation be 

π = U – H 

π =  2

2

2

13

4

81
4

aa
l

EI



  – 








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

 2
1
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For stationary value π, the following condition must be satisfied 

 
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
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
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Similarly,  
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 
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
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
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W.K.T 

y=a1sin
𝜋𝑥

𝑙
+a2sin

3𝜋𝑥

𝑙
 

substitute a1& a2 value 

 y= 














l

EI

l 22
4

3

sin
𝜋𝑥

𝑙
+ 













 3

2

81

2
4

3 l

EI

l
sin

3𝜋𝑥

𝑙
 

26. A bar of uniform cross section is clamped at one end and left free at the other end and it is 

subjected to a uniform axial load p as shown in fig. calculate the displacement and stress in 

a bar by using two terms polynomial and three terms polynomial. Compare with exact 

solution.1. displacement of the bar, 𝝏u. 2. Stress in the bar, 𝝈. By using two term and three 

terms polynomial. 

 
Solution: 

We know that, polynomial function for displacement is, 

U=a0+a1x+a2x
2+a3x3+a4x4+….anx

n 

Case(i); considering two terms of polynomial, 

Apply boundary condtions, 

At x=0, u=0 

0=a0+0 

a0=0 

substituting a0 value in equation (1), 
𝑑𝑢

𝑑𝑥
=a1 
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We know that, 

Total potential energy of the bar, π=U-H 

Where, U=strain energy of the bar, 

           H=qwork done by external force of the bar. 

Strain energy, U=
𝐸𝐴

2
∫ (

𝑑𝑢

𝑑𝑥

𝑙

0
)2dx 

 

 l

l

x
AEa

dxa
AE

0

2

1

0

2

1

2

2



 
 

      U= 
EAa12  l

2
 

Work done by external force, H=∫ 𝑝𝑑𝑥
1

0
=∫ 𝜌𝑢𝐴𝑑𝑥

1

0
 

21

0

2

1

0

1

0

2

2

l
Aa

H

x
Aa

xdxaA

udxAH

l

l

l





























 

Substitute U & H value in equation  

π = 
22

2

1

2

1 lAalAEa 
  

For stationary value π, the following condition must be satisfied 

E

l
a

lA
lAEa

lAlaAE

a

2

0
2

0
22

2

0
1

1

2

1

2

1




















 

Substitute a1 value in the equation 

u = a1x 

x
E

l
u

2


  
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W.k.t extension of bar, δu = u1 – u0  =
E

l
l

E

l

2
0

2

2
  

δu= 
E

l

2

2
 

Stress in bar σ = Edu/dx=E 
E

l

2


 

σ = 
2

l
 

case ii: Three terms of polynomial, 

u=a0+a1x+a2x2 

apply boundary condition, at x = 0; u = 0 

0 = a0 + 0 + 0 

a0=  0 

substitute a0 value in the equation 

u=a1x+a2x2 

du/dx = a1x+2a2x 

W.K.T, 

Total potential energy of the bar, π = U – H 

Strain energy, U = 

 

 









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
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


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3
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0
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0
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x
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x
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dxxaaxaa
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dxxaa
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dx
dx

duAE

l

l
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l

 

Work done by external force,  









l

l

Audx

PdxH

0

0


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








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Substitute U & H value in equation 
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For the stationary value of π, the following conditions must be satitsfied. 

0
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Solving the equations  

a1 = 
E

l
 

a2=
E2


  

W.k.t, u=a1x+a2x
2 

Substitute a1 &a2 value in the above eqn 

u = 









2

2x
lx

E
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at x = l, u = u1 substitute in the above eqn 
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W.k.t extension of bar, δu = u1 – u0  =
E

l

E

l

2
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2
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δu= 
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for the equation u = 
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
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we know that  u = 




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

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du/dx =  xl
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Stress in bar σ = Edu/dx=E 
E

xl )( 
 

σ =ρ(l-x)  

27. Consider the differential equation for a problem such as  
𝒅𝟐𝒚

𝒅𝒙𝟐+300x2=0; , 0<x<1 with the 

boundary condition, y(0)=y(1)=0, the functional corresponding to this problem to be 

extremized is given by I= ∫ {−
𝟏

𝟐

𝟏

𝟎
 (

𝒅𝒚

𝒅𝒙
)2+300 x2+y} dx. Find the solution of the problem using 

Rayleigh ritz method using a one term solution is y=ax (1-x3).  (Nov/Dec 2009) 

Given:  differential equation. 

+300x2=0; 0<=x<=1 

Boundary conditions; y(0)=y(1)=0 

(i) x=0, y=0 

(ii) x=1, y=0 

I= 2+300 x2+y} dx 

Trial function, y=a x (1-x3) 

 To find: solution of the problem by using rayliegh- ritz method. 

 Solution:    Trial function, y =  a x (1 - x3) 

                                              y = ax - ax4 

 It satisfies the boundary conditions,  

x=0, y=0, 

x=1, y=0 

 Differential equation, 300 x2=0 

dy/dx=a-4ax3 

(dy/dx)2 = (a – 4ax3)2 

 We know that,  

I= 2+300 x2+y} dx 

 Substitute the equation,  

                         I= +300 x2 }dx 
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 Apply, =0 

 

  A=25 

 Hence solution is , y=25x (1-x3) 

28. List and Briefly describe the general steps of the finite element method. 

BASIC CONCEPT OF THE FINITE ELEMENT ANALYSIS: 

General Methods of the Finite Element Analysis 

1. Force Method – Internal forces are considered as the unknowns of the problem. 

2. Displacement or stiffness method – Displacements of the nodes are considered as the unknowns of the 

problem. 

General Steps of the Finite Element Analysis 

Discretization of structure > Numbering of Nodes and Elements > Selection of Displacement function or 

interpolation function > Define the material behavior by using Strain – Displacement and Stress – Strain 

relationships > Derivation of element  stiffness  matrix  and  equations  >  Assemble  the  element  

equations  to obtain the global or total equations > Applying boundary conditions > Solution for the 

   
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unknown displacements > computation of the element strains and stresses from the nodal displacements 

> Interpret the results (post processing). 

Boundary Conditions 

It can be either on displacements or on stresses.  The boundary conditions on displacements to prevail at 

certain points on the boundary of the body, whereas the boundary conditions on stresses require that the 

stresses induced must be in equilibrium with the external forces applied at certain points on the 

boundary of the body. 

Consideration During Discretization process 

Types of element > Size of element > Location of node > Number of elements. 

Basic Concepts of Finite Element Method: 

 The basic concept behind the Finite element method is “going from part to whole” 

 Name “FINITE ELEMENT” coined by Clough 

Fitting of a number of piecewise continuous polynomials to approximate the variation of the field 

variable over the entire domain   

In the FEM of analysis , a complex region defining a continuum is discretized into simple geometric 

shapes called finite elements. 

The finite element is a small part of the structure. 

In 2 Dimensions, it is usually a triangular or a quadrilateral. 

In 3Dimensions---a tetrahedron 

Simple functions, such as polynomials are chosen in terms of unknown displacement at the nodes to 

approximate the variation of the actual displacement over each finite element. 

The external loading is also transformed into equivalent  force applied at the nodes, later each elements 

are assembled, then unknowns are calculated by applying boundary conditions. 
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Flowchart of finite element Analysis (FEA) 

Discretization into finite element 

 

Selection and Numbering of nodes and elements 

 

Selection of nodal displacement function in terms of nodal displacement 

 

Forming element stiffness matrix 

 

By applying boundary conditions solving the simultaneous equations 

 

Interpretation of the results 

 

Steps involved in FEA 

Step 1: Discretization of Continuum  

Step 2:  Generation of basic data 

a) Numbering of nodes and elements 

b) Degree of freedom 

Step 3: Determination of element stiffness matrix  

Step 4:Assembly of overall stiffness matrix 

a) Equilibrium of forces 

b) Compatibility of displacement 

c) Procedure for assembling overall stiffness matrix 

Step 5: Elimination of Restrained Degrees of freedom 

Step 6: Calculation of Nodal Displacement and stresses 
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 Method of Weighted Residual method- Galerkin method 

 Gaussian Elimination method for solving matrices 

Step 1: Discretization of Continuum  

In this step the given structure is divided into subdivisions or elements. Depending upon the problem we 

may choose I D, II D or IIID elements. 

I D elements 

 

II D elements 

 

III D elements 
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We make an assumption as to the variation of the unknown solutions over the element. In general, the 

field variable (example, temperature, displacement etc) is assumed to vary linearly or quadratically or 

cubically.  

Displacement model associated with each element 
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Derivation of elemental matrices and load vectors:  

From the assumed displacement model, the elemental stiffness matrix [K]e and load vector [P]e of the 

element are to be derived using either equilibrium methods or a suitable variational principle. 

Assembly of elemental equations to obtain overall stiffness matrix: the individual element stiffness 

matrices and load vectors are to be assembled in a suitable manner to get the overall stiffness equation 

which is expressed as  

[ K ] { u }  =  { P }  

where [K] is the assembled stiffness matrix 

           {u} is the vector of unknowns or nodal 

displacements 

           {P} is the vector of nodal forces for the 

complete structure 

Imposition of boundary conditions: The Boundary conditions could now be incorporated to get the 

reduced equations. 

Determination of element stiffness matrix: 

Element Stiffness Matrix, k = 
𝐴𝐸

𝑙
[

1 −1
−1 1

] 
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Solutions for the unknown nodal displacements: The elemental matrices, on assembly, yield a set of 

equations, which could be expressed as a set of matrices, which could be solved using any iterative 

procedure or numerical method. 

{F} = [K] {Δ}  

Computation of elemental strains and stresses: From the unknown displacements, the element strains 

and stresses can be computed by using the necessary equations of solid or structural mechanics. 

30.Write short notes on advantages, disadvantages and applications of Finite Element Method. 

Advantages of Finite Element Method 

1.   FEM can handle irregular geometry in a convenient manner. 

2.   Handles general load conditions without difficulty 

3.   Non – homogeneous materials can be handled easily. 

4.   Higher order elements may be implemented. 

Disadvantages of Finite Element Method 

1.   It requires a digital computer and fairly extensive 

2.   It requires longer execution time compared with FEM. 

3.   Output result will vary considerably. 

Applications of Finite Element Analysis 

Structural Problems: 

1.   Stress analysis including truss and frame analysis 

2.   Stress concentration problems typically associated with holes, fillets or other changes in geometry in 

a body. 

3.   Buckling  Analysis:  Example:  Connecting  rod  subjected  to  axial compression. 

4.   Vibration Analysis: Example: A beam subjected to different types of loading. 

Non - Structural Problems: 

1.   Heat Transfer analysis:Example: Steady state thermal analysis on composite cylinder. 

2.   Fluid flow analysis:Example: Fluid flow through pipes. 
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Two Marks Question and Answers. 

UNIT-1INTRODUCTION 

1. What is meant by finite element? 

A small units having definite shape of geometry and nodes is called finite element. 

 

2. What is meant by finite element analysis? (Nov 2008) 

 Finite Element method is a numerical method for solving problems of engineering and 

mathematical physics. 

 In the finite element method, instead of solving the problem for the entire body in one operation, 

we formulate the equations for each finite element and combine them to obtain the solution of the whole 

body. 

 

3. State the need of Weak Formulation (Nov 2010) 

 It reduces the continuity requirement on the trial function assumed in the solution. So it is 

referred to as the weak form. It is possible to have a wider choice of trial functions 

  

4. What is meant by node or joint? 

Each kind of finite element has a specific structural shape and is inter- connected with the 

adjacent element by nodal point or nodes. At the nodes, degrees of freedom are located. The forces will 

act only at nodes at any others place in the element. 

 

5. What is the basic of finite element method? 

Discretization is the basis of finite element method. The art of subdividing a structure in to 

convenient number of smaller components is known as Discretization. 

 

6. Give Examples for the finite element. 

1. 1-D dimensional Elements: Truss , Bar Element 

    2. 2-D dimensional Elements: Triangular, Rectangular Element 

    3. 3-D dimensional Elements: Tetrahedral, Hexahedral Element 

 

7. What are the types of boundary conditions? (Nov 2011) 

 Primary boundary conditions 

 Secondary boundary conditions 

 

8. State the methods of engineering analysis 

 Experimental methods 

 Analytical methods 

 Numerical methods or approximate methods 

 

9. What are the types of element? 

 1D element 

 2D element 

 3D element 
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10. State the three phases of finite element method. 

 Preprocessing 

 Analysis 

 Post Processing 

 

11. What is structural problem? 

Displacement at each nodal point is obtained. By these displacements solution stress and strain in 

each element can be calculated. 

 

12. What is non structural problem? 

Temperature or fluid pressure at each nodal point is obtained. By using these values properties 

such as heat flow fluid flow for each element can be calculated. 

 

13.What are the methods are generally associated with the finite element analysis? 

 Force method 

 Displacement or stiffness method. 

 

14. Explain stiffness method. 

Displacement or stiffness method, displacement of the nodes is considered as the unknown of the 

problem. Among them two approaches, displacement method is desirable. 

 

15. Explain Force Method? 

 In force Method, internal forces are considered as the unknowns of the problem 

 

16. Why polynomial type of interpolation functions are mostly used in FEM? (May 2013) 

 The polynomial type of interpolation fuctions are mostly used due to the following reasons: 

a. It is easy to formulate and computerize the finite element equations. 

b. It is easy to perform differentiation or integration 

c. The accuracy of the results can be improved by increasing the order of the polynomial 

 

17. What is meant by post processing? 

Analysis and evaluation of the solution result is referred to as post processing. Postprocessor 

computer program help the user to interpret the result by displaying them in graphical form. 

 

18. Name the variation methods. 

 Ritz method. 

 Ray-Leigh Ritz method. 

 

19. What is meant by degrees of freedom? (may2011) 

When the force or reaction act at nodal point node is subjected to deformation. The deformation 

includes displacement rotation, and or strains. These are collectively known as degrees of freedom 

 

20. What is meant by discretization? 

The art of subdividing a structure in to convenient number of smaller components is known as 

discretization. These smaller components are then put together. The process of uniting the various 

elements together is called assemblage. 
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21. What is meant by Assemblage? 

These smaller components are then put together. The process of uniting the various elements 

together is called assemblage. 

 

22. What is Rayleigh-Ritz method? (May 2012) 

It is integral approach method which is useful for solving complex structural problem, 

encountered in finite element analysis. This method is possible only if a suitable function is available. 

 

23. What is Aspect ratio? 

It is defined as the ratio of the largest dimension of the element to the smallest dimension. In 

many cases, as the aspect ratio increases the in accuracy of the solution increases. The conclusion of 

many researches is that the aspect ratio should be close to unity as possible. 

 

24. What is truss element? (Nov2012) 

The truss elements are the part of a truss structure linked together by point joint which transmits 

only axial force to the element. 

 

25. What are the h and p versions of finite element method? 

It is used to improve the accuracy of the finite element method. In h version, the order of 

polynomial approximation for all elements is kept constant and the numbers of elements are increased. 

In p version, the numbers of elements are maintained constant and the order of polynomial 

approximation of element is increased. 

 

26. Name the weighted residual method (Nov 2011) 

 Point collocation method 

 Sub domain collocation method 

 Lest squares method 

 Galerkins method. 

 

27. List the two advantages of post processing. 

Required result can be obtained in graphical form. Contour diagrams can be used to understand 

the solution easily and quickly. 

 

28. During discretization, mention the places where it is necessary to place a node? 

 Concentrated load acting point 

 Cross-section changing point 

 Different material interjections point 

 Sudden change in point load 

 

29. What is the difference between static and dynamic analysis? 

Static analysis: The solution of the problem does not vary with time is known as static analysis 

Example: stress analysis on a beam 

 

Dynamic analysis: The solution of the problem varies with time is known as dynamic analysis 

Example: vibration analysis problem. 
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30. Name any four FEA software’s. 

 ANSYS 

 NASTRAN 

 COSMOS 

 

31. Differentiate between global and local axes. 

Local axes are established in an element. Since it is in the element level, they change 

with the change in orientation of the element. The direction differs from element to element. 

 

Global axes are defined for the entire system. They are same in direction for all the elements 

even though the elements are differently oriented. 

 

32. Distinguish between potential energy function and potential energy functional 

If a system has finite number of degree of freedom (q1,q2,and q3), then the potential 

energy expressed as, 

π = f (q1,q2,and q3) 

It is known as function. If a system has infinite degrees of freedom then the potential 

energy is expressed as 

 

 
 

33. What are the types of loading acting on the structure? 

 Body force (f) 

 Traction force (T) 

 Point load (P) 

 

34. Define the body force 

A body force is distributed force acting on every elemental volume of the body 

Unit: Force per unit volume. 

Example: Self weight due to gravity 

 

35. Define traction force 

Traction force is defined as distributed force acting on the surface of the body. 

Unit: Force per unit area. 

Example: Frictional resistance, viscous drag, surface shear 

 

36. What is point load? 

Point load is force acting at a particular point which causes displacement. 

 

37. What are the basic steps involved in the finite element modeling 

 Discretization of structure. 

 Numbering of nodes. 

 

38. Write down the general finite element equation. 
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FKu

K-Stiffness matrix in N/mm 

U-Nodal displacement in mm 



39. What is discretization? 

The art of subdividing a structure in to a convenient number of smaller components is known as 

discretization. 

 

40.list the types of nodes? (May 2012) 

 Exterior Nodes 

 Interior Nodes 

 

41. What is interpolation functions? (May 2012) 

The function used to represent the behavior of the field variable with in an element are called 

interpolation functions. 

 

42. What should be considered during piecewise trial functions? (May 2011) 

 Continuity of the field variable at the junctions 

 Continuity of the derivative at the junctions are considered 

 

43.Mention the basic steps of Rayleigh-Ritz method? (May 2011) 

 The basic steps of Rayleigh-Ritz method are 

 Assume a displacement field 

 Evaluation of the total potential 

 Set up and solve the system of equations 

 

44. What do you mean by constitutive law? 

 

 For a finite Element, the stress-strain relations are expressed as follows: 

 

{σ}= {D}{e} 

 

{σ}= Stress in N/m2 

{D}=Stress-Strain relationship matrix 

 

{e}=Strain (No Unit) 
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UNIT II 

ONE-DIMENSIONAL PROBLEMS 

  

One Dimensional Second Order Equations – Discretization – Element types- Linear and Higher order 

Elements – Derivation of Shape functions and Stiffness matrices and force vectors- Assembly of 

Matrices - Solution of problems from solid mechanics and heat transfer. Longitudinal vibration 

frequencies and mode shapes. Fourth Order Beam Equation –Transverse deflections and Natural 

frequencies of beams. 

 

1. Derive the One dimensional Second order equations. 

ONE DIMENSIONAL SECOND ORDER EQUATIONS  

 

OneDimensionalelement 
Bar and beam elements are considered as One Dimensional elements.  These elements are 

often used to model trusses and frame structures. 

 

The total potential energy, stress-strain and strain-displacement relationships are used in developing the 

finite element method for a one-dimensional problem. 

 

For the one-dimensional problem, the stress (σ), strain (e), displacement (u), and loading (P) depends 

only on the variable x. 

The vector u, e, σ are reduced to 

u = u (x),  

e = e(x), 

σ = σ(x) 

the stress-strain  and strain-displacement relationship are given by 

 

σ α e 

σ = Ee 
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e = du/dx 

σ = F/A 

e=dl/l = change in length/ Original length 

where,  

E--- Young’s modulus , N/mm2 

e--- Strain 

σ---Stress, N/mm2 

For One dimensional problems, the differential volume, dv can be written as  

dv =  A dx 
 
Bar,Beamand Truss 

Bar is a member which resists only axial loads. A beam can resist axial, lateral and twisting loads. 

A truss is an assemblage of bars with pin joints and a frame is an assemblage of beam elements. 

Stress,StrainandDisplacement 

Stress is denoted in the form of vector by the variable x as σx, Strain is denoted in the form of 

vector by the variable x as ex, Displacement is denoted in the form of vector by the variable x as ux. 

Types ofLoading 
 
(1) Body force (f) 
 
Itis distributedforceactingoneveryelementalvolumeofthebody. 

Unit isForce/Unitvolume. 

Ex:Selfweightduetogravity. 

(2)Traction(T) 
 
Itis distributedforceactingonthesurfaceofthebody. 

Unitis Force/Unitarea.Butforonedimensionalproblem,unitisForce/Unitlength. 

Ex:Frictionalresistance,viscous dragandSurfaceshear. 

 

(3)Pointload(P) 
 
Itis forceactingataparticularpointwhichcauses displacement. 

Unit is N 

Ex: Ball bearing loads 

 

FiniteElementModelinghas two processes. 
 

(1)Discretizationofstructure 
 

(2)Numberingofnodes. 
 
 
 

2. Write short notes on Discretization. 
DISCRETIZATION: 
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The art of subdividing a structure into convenient number of smaller components is known as 

discretization. 

Nodal force: 

The force that acts on the each nodal point is called as nodal force. 

Nodal Points: 

A finite element has a specific structural shape and it is interconnected with an adjacent element by 

nodal points (or) Nodes. 

Degree of freedom: 

Nodal points(or) Nodes are subjected to deformation. This deformations includes displacements, 

rotations, strains. These are collectively called as degree of freedom. 

 

Discretization can be classified into 

1) Natural 

2) Artificial (continuum) 

Natural Discretization: In any structure analysis, truss is considered as a natural system. the various 

members of the truss forms the elements. These elements are connected at various joints known as 

nodes. 

The truss consists of 13 elements and 8 nodes. There are four freely moving and 2 extreme constrained 

nodes. The truss is a natural system as there is no possibility either to increase or decrease the number of 

elements and nodes. 

Artificial Discretization: 
A single mass of material as found in forging, concrete dam, deep beam and plate are generally called as 

continuum. 

Unlike the truss element which is physically present in the truss in a continuum, the following three 

elements exits, 

 Triangular element  

 Rectangular element 

 Quadrilateral element 

Numbering Scheme: 

Each node is allowed to move only in ±x for one dimensional problems. So eah node has one degree of 

freedom. 

A finite element with four nodes has four degree of freedom. Global numbers are those 

corresponding node numbers on the structure. (i.e) Node numbers are global numbers 

The choice of element to be used for discretization depends on the following factors. 

1. Number of degree of freedom 

2. Shape and size of component 

3. Expected accuracy 

4. Necessary equations required 
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3. Discuss about the various element types used in FEA. 

 

ELEMENT TYPE 

In the FEM of analysis , a complex region defining a continuum is discretized into simple geometric 

shapes called finite elements. 

The finite element is a small part of the structure. 

Types of element: 

I. One dimensional elements 

II. Two dimensional elements 

III. Three dimensional elements 

IV. Axisymmetric elements 

I D elements 

 

II D elements 
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III D elements 

 

4. Derive the shape function for three noded triangular elements. 

Shapefunction 

The shape function is a function which interpolates the solution between the discrete values 

obtained at the nodes. 

Shape function is used to express the geometry or shape of the element. 

Three noded triangular elements: 

The field variables are described by the following approximate relation. 

Φ(x,y) = N1(x,y) Φ1 + N2(x,y) Φ2 + N3(x,y) Φ3 

Φ1, Φ2,Φ3-----field variables 

N1,N2,N3areusuallydenotedasshapefunction. 

Shape function has unity value at one nodal point and zero value at other nodal points. 

Inonedimensionalproblem,the displacement 

u= Niui=N1u1 

N1 – S ha p e  fu nc t io n  

u1 - displacement 
 

For twonoded bar element, the displacement at anypoint within the element is givenby, 

u= Niui=N1u1+N2u2 

 

This can be written as  

u = [𝑁1 𝑁2]  [
𝑢1
𝑢2

] 
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For threenodedtriangular  element, the displacement  at  anypoint  within the element is 

givenby, 

u= Niui=N1u1+N2u2+N3u3 
 

v=Nivi=N1v1+N2v2+N3v3 
 

Shape function need to satisfy the following 
 

(a) First derivatives should be finite within an element;  

(b) Displacement should be continuous across the element boundary. 

5. Discuss the Characteristics of shape function. 

Characteristics of shape function: 

 Sum of shape function is equal to one 

 First derivative should be finite within the element 

 Displacement should be continuous across the element boundary. 

 The shape function has unit value at its own nodal point and zero value at other nodal points. 

 The shape function for two dimensional elements is zero along each side that the nodes do 

not touch. 

 The shape functions are always polynomials of the same type as the original interpolation 

equation. 

 The accuracy of the result can be improved by increasing the order of the polynomial. 

6.Write short notes on stiffness matrix and its characteristics . 

Stiffness Matrix [K] 

 

Where, dv = A dx 

[B]   Strain- displacement relationship matrix 

[D] Stress strain relationship matrix 

In one dimensional problem 

Strain    e=du/dx 

Where, u----Displacement function 

[D]  = [E] = E= Young’s Modulus 
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Character of stiffness matrix: 

1. Stiffness matrix is a symmetric matrix. 

2. In any column, sum of elements is equal to zero. 

3. The determinant is always equal to zero, because, it is an unstable element. 

4. N*N is the dimension of the global stiffness matrix. 

Where N---Number of nodes 

5. The diagonal coefficients are always positive and relatively large when compared to the off-

diagonal values in the same row. 

 

6. Derive the equation for the bar element formulated from the stationary of a 

functional.(May/June 2014) 

Consider a  bar element with nodes 1 and 2 as shown in fig. u1 and u2 are the displacement at the 

respective nodes. So u1 and u2 are considered as degree of freedom of this bar element. (degree 

of freedom is nothing but noded displacement) 

 

u=N1u1+ N 2 u2- - -- 1 

Where, N1= 1-
𝑥

𝑙
 

N2=
𝑥

𝑙
 

Substitute the N1, N2 values in equation 1 

u=(1-
𝑥

𝑙
)u1+

𝑥

𝑙
 u2 

The strain energy stored within the element is given by, 

u=∫
𝐴 𝐸

2

1

0
 (

𝑑𝑢

𝑑𝑥
)2 dx 








 


l

dx
l

uuAE
u

0

2

12

2
 



UNIT-II/ ONE-DIMENSIONAL PROBLEMS  P a g e  | 8 
 

ME8692 FINITE ELEMENT ANALYSIS   
 

 lx
l

uuAE
u 0

2

12

2







 
  

 l
l

uuAE
u

2

12

2







 
  

u= 
𝐴 𝐸 

2
(

(𝑢2−𝑢1  )

𝑙
)2= (l) 

When there is distributed force q0 acting at each point on the element and concentrated forces F 

at the nodes, the potential of the external forces is given by 

 

l

uFuFudxqH
0

22110  

  2211210

2211
21

0

2

2

uFuFuu
l

qH

uFuFl
uu

q










 


 

Thus the potential energy 

π = U – H 

 
  2211210

2

12

22
uFuFuu

l
q

l

uuAE



  

Apply, 0
1






u


 

 

 

  1
0

21

1

0

21

1
0

12

2
*

0
2

*

0
2

2*
2

F
lq

uu
l

AE

F
lq

uu
l

AE

F
lq

uu
l

AE







 

Similarly , 0
2






u


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 

 

  2
0

12

2

0

12

2
0

12

2
*

0
2

*

0
2

2*
2

F
lq

uu
l

AE

F
lq

uu
l

AE

F
lq

uu
l

AE







 















































2

1

0

0

2

1

2

2
11

11

F

F

lq

lq

u

u

l

AE
 

 [K] {u}={F} 

LINEAR ELEMENT 

7. Derive the displacement function and stiffness matrix for one dimensional linear bar 

element based on global co-ordinate approach.       

 

Consider a bar element with nodes 1 and 2 as shown in gig. U1 and u2 are the displacements at 

the respective nodes. So u1 and u2are considered as degree of freedom of this bar element. 

[note: degree of freedom is nothing but nodal displacements] 

 
Since the element has not two degree of freedom. It will two generalized co-ordinates. 

 u=a0+a1x ………  (1) 

Where, a0 and a1 are global or generalized co0ordinates. Writing the equation in matrix from. 

u=[1-x] 








1

0

a

a
………… (2) 

At node 1,     u= u1, x=0 

At node 2,     u= u2, x=l 

Substituting the above values in equation 

u1=a0 ………………(3) 

u2= a0+ a1l ……………….(4) 

Arranging the above equation in matrix form, 
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
























1

0

2

1

10

01

a

a

u

u
 ………………..(5) 

 

u*            C      A 

Where, u*- degree of freedom 

           C-connectivity matrix 

            A-generalized or global co-ordinates matrix 
1

2

1

1

01




















lu

u
 

= 
0

1

l 















1

0

10

01

a

a
 

[Note: 

1

2221

1211 0











aa

aa
 =

)(

1

21122211 aaaa 
x 













1121

1222

aa

aa
] 









1

0

a

a
=

l

1


















2

1

1

01

u

u

l
 

Substitute 








1

0

a

a
 values in equation (2) 

u= [1-x]
l

1


















2

1

11

01

u

u
………….(6) 

=
l

1
 [1-x] 


















2

1

11

01

u

u
 

=
l

1
[l-x 0+x]









2

1

u

u
 

[“matrix multiplication (1x2) x (2x2)=(1x2)] 

u=[N1 N2] 








2

1

u

u
 

 Displacement function, u=N1 u1+N2 u2 ……………… (7) 

Where, shape function, N1=
l

xl 
, shape function, N2=

l

x
 

We may note that N1 and N2 obey the definition of shape function, the function will have a value 

equal to unity at the node to which it belongs and value at other nodes. 

Checking: at node 1, x=0. 

N1=
l

xl 
=

l

l 0
 

N1=1 
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N2=
ll

x 0
  

N2=0 

 

At node 2, x=l 

N1=
l

xl 
=

l

ll 
 

N1=0 

N2=
l

l

l

x
  

N2=1 

Stiffness matrix 

W.K.T, stiffness matrix [k] = 
v

T dvBDB ]][[][  

In 1’D bar element,  

 Displacement function, u = N1u1 + N2u2 

Where, 
l

x

l

x
N 


 21 N ;

1
 

W.K.T 

 Strain displacement, 

 





















ll

dx

dN

dx

dN
B

11
      

21

 

 

In one dimensional problems, [D] = [E] = E = Young’s modulus 

Substitute ]][[][ BDB T value stiffness matrix 

 





































l

l

dx

dN
dx

dN

B
T

1

1

      

2

1
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 

 

 

   

   

 

      

11

11

11

11

11

11

 
11

11

Adxdv                  
11

11

11
**

1

1

22

22

0

22

22

1

0
22

22

1

0
22

22

1

0










































































































































l

AE
k

l

ll

llEAk

x

ll

llEAk

dx

ll

llEAk

EAdx

ll

llk

dv
ll

E

l

lk

l



 

HIGHER ORDER ELEMENT 

QUADRATIC ELEMENT: 

Derivation of shape functions 

8. Derive the shape functions for one dimensional for one-dimensional quadratic 

element.(Nov/Dec 2013) 



UNIT-II/ ONE-DIMENSIONAL PROBLEMS  P a g e  | 13 
 

ME8692 FINITE ELEMENT ANALYSIS   
 

 
Consider a quadratic bar element with node 1,2 and 3 as shown in fig. u1, u2 u3 are the 

displacements at the respective nodes. so u1, u2 u3 are considered as degree of freedom of this 

quadratic bar element. 

  Since the element has got three nodal displacement, it will have generalized coordinates. 

u=a0+a1x + a2x
2……(1) 

where, a0, a1 and a2 are global or generalized coordinates. Writing the equation (1) in matrix 

form,  

u=[ 1  x  x2] 

















2

1

0

a

a

a

……(2) 

At node 1, u=u1    x=0 

At node 2, u=u2 x=l 

At node 3, u= u3 x=l/2 

Substitute the above value in equation (1),  

u1=a0 ………..(3) 

u2=a0+a1l+a2 l
2……..(4) 

u3=a0+a1(l/2)+a2(l/2)2……(5) 

substitute the equation (3) in equation (4) and (5) 

Equation (4) u2=u1+a1l+a2l2………………(6) 

Equation (5) u3=u1+
42

2

21 lala
  ………..(7) 

Equation (6) u2-u1=
42

2

21 lala
 ………..(8) 

Arranging the equation (7) and (8) in matrix form. 




























42

2

2

13

12
ll
ll

uu

uu









2

1

a

a
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







2

1

a

a
=




























13

12

1

2

2

42
uu

uu
ll
ll

 

=










24

1
33 ll 



























13

12

1

2

2

42
uu

uu
ll
ll

 

[note

1

2221

1211












aa

aa
=
 13122211

1

aaaa 
X 













1121

1222

aa

aa
] 









2

1

a

a
=






















l

l

l
l

l

4

4

4

1
2

2

3













13

12

uu

uu
…….(9) 

a1= 










)()(

4

4
23212

2

3
uuluu

l

l
…..(10) 

a2= 










)()(

2

4
232123

uuluu
l

l
…..(11) 

Equation  

 a1= 










)(

44

4
132

1

2

2

2

3
uul

ulul

l
 

  = 
3

2

2

4

4

l

ul


3

1

2

4

4

l

ul


3

3

2

4

4

l

ul
3

1

2

4

4

l

ul
 

 =
l

u

l

u

l

u

l

u 131

3

2 44



 

 a1=
l

u

l

u

l

u 321 43



………..(12) 

Equation (11)  

 a2= 










)(

44

4
132

1

2

2

2

3
uul

ulul

l
 

  = 
3

2

2

4

4

l

ul


3

1

2

4

4

l

ul


3

3

2

4

4

l

ul
3

1

2

4

4

l

ul
 

 =
l

u

l

u

l

u

l

u 131

3

2 44



 

 a2= 322

2
12

422
u

ll

u
u

l
 …………(13) 

Arranging the equation in matrix  
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










































222

2

1

0

422

413
001

lll

lll
a

a

a

















3

2

1

u

u

u

………..(14) 

 

Substitute the equation (14) in equation (9) 

{u}=[ 1 x x2] 



























222

422

413
001

lll

lll 















3

2

1

u

u

u

……..(15) 

{u}=[(1- )]
44

)(
2

)(
23

2

2

2

2

2

2

l

x

l

x

l

x

l

x

l

x
x

l





















3

2

1

u

u

u

 

{u}=[N1 N2 N3] 

















3

2

1

u

u

u

 

{u}= N1 u1 = N2 u2 + N3 u3 

Where, shape functions, 

N1=1-
2

223

l

x

l

x
  

N2= 2

22

l

x

l

x



 

N3= 2

244

l

x

l

x


 

Derivation of stiffness matrices: 

9. Derive the stiffness matrix for one-dimensional quadratic bar element.(Nov/Dec 2013) 
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Consider a one dimensional quadric bar element with nodes 1, 2 and 3 as shown in fig. let u1, u2 

and u3be the nodal displacement parameters or otherwise known degree of freedom. 

We know that, stiffness matrix, [k]= dvBDBv T ]][[][  

In one dimensional quadratic bar element, 

Displacement function, u=N1u1=N2u2+N3u3 

 Where, N1=1-
2

223

l

x

l

x
  

  N2= 2

22

l

x

l

x



 

N2= 2

244

l

x

l

x
  

We know that,  

Strain –displacement matrix, [B]=
dx

dN1

dx

dN2

dx

dN3  

dx

dN1 =
2

43

l

x

l



 

 

dx

dN2 =
2

41

l

x

l



 

dx

dN3 =
2

84

l

x

l
  

Substitute the equation. 

[B]=[ 










2

43

l

x

l











2

41

l

x

l










2

84

l

x

l
] 
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[B]T=































































2

2

2

84

41

43

l

x

l

l

x

l

l

x

l

 

In one dimensional problem, 

[D]=[E] =E=young’s modulus 

Substitute [B] [B]T and [D] values in stiffness matrix equation. 

[k]= 































































1

0

2

2

2

84

41

43

l

x

l

l

x

l

l

x

l








































222

844143

l

x

ll

x

ll

x

l
xE dv. 

[k]= 
1

0






















































































































































































































222222

222222

222222

848484418443

844141414143

844341434343

l

x

ll

x

ll

x

ll

x

ll

x

ll

x

l

l

x

ll

x

ll

x

ll

x

ll

x

ll

x

l

l

x

ll

x

ll

x

ll

x

ll

x

ll

x

l

dx 

[k]= 
1

0

dx

l

x

l

x

l

x

ll

x

l

x

l

x

ll

x

l

x

l

x

l

l

x

l

x

l

x

ll

x

l

x

l

x

ll

x

l

x

l

x

l

l

x

l

x

l

x

ll

x

l

x

l

x

ll

x

l

x

l

x

l



















































































































4

2

3324

2
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2

332

4

2
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2
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2
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4

2

3324

2

3324

2
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6432321632168432162412
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[k] =E A

1

0

4

2
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2
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2

332
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2
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2
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2

332

4
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2
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2
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
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[k] =E A 
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
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
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[k]=E A


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
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
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[k]=E A












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
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


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10.

 Derive the Force vector and assembly matrices. 

FORCE VECTOR (F) 

Consider a vertically hanging Bar of length l, uniform cross-section A, density ρ and young’s 

modulus,E. It has the self weight (W) because the bar is hanging via gravity. 

The force vector is given by 

{F} = ∫[N]T * W 

w.k.tself weight 

W=ρA dx 

For one dimensional bar element 

N=







 

l

x

l

xl

 

NT = 















 

l

x
l

xl

 

{F}=∫

















l

x
l

x
1

l

0
ρA dx 
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  =ρA ∫

















l

x
l

x
1

l

0
 dx 

=ρA 


















l

l

2

l
2

l
1

2

2

 

=ρA

















2

l
2

l
l

 

=ρA
















2

l
2

l

 

Force Vecor, {F}= 







1

1

2

Al

 

ASSEMBLY OF MATRICES: 

Consider vertical hanging bar  

Consider bar has 4 elements and 5 nodes  

W.k.t, Finite element equation is written as, 

{F} = [K] {u} 

[K]=













11

11

l

AE

 






























2

1

2

1

11

11

u

u

l

AE

F

F

 

This is the finite element equation. 

11. Consider a bar as shown in fig. cross sectional area of the bar 750mm2and young’s 

modulus is 2x105N/mm2. If u1=0.5mm and u2=0.625mm. calculate the following; 

(i) Displacement at point, P 

(ii) Strain, e 

(iii) Stress, σ 
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(iv) Element stiffness matrix, [ k]. (May/June 2005, April/May 2011)  

   

 

Given: Area, A=750mm2 

Young’s modulus, E=2x105 N/mm2 

 Displacements, u1=0.5mm 

    u2=0.625mm 

Distance, x1=375mm 

                 X2=575mm 

To find:   

(i) Displacement at point, P 

(ii) Strain, e 

(iii) Stress, σ 

(iv) Element stiffness matrix,[ k]. 

Solution:  

                We know that, actual length  of the bar, 

l=x2-x1 =575-375 

l=200mm 

The distance between point 1 and point p is, 

                                                X=500-375 

x=125mm 

We know that, displacement function for two noded bar element is, 

u=N1u1+N2u2 

Where, shape function, N1=
l

xl 
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N2=
l

x
 

N1=
200

125200 
 

N1=0.375 

N2=
l

x
=

200

125
 

Substitute N1, N2, u1,u2 values in displacement equation. 

We know that, strain e=[B] {u*} 

Where, [B] is a stain – displacement matrix. 

              {u*}- is a degree freedom. 

[B]= 








ll

11
 

= 






 

200

1

200

1
 

Strain, e= [B] {u*} = 






 

200

1

200

1









2

1

u

u
 

= 






 

200

1

200

1









625.0

5.
 

= 










625.0

200

1
5.0

200

1
XX  

Strain e=6.25x10-4 

We know that,   stress, σ=E e=2x105x6.25x10-4 

Stress, σ=125 N/mm2 

For one dimensional bar element bar element, stiffness matrix is given by, 

[k]= 












11

11

l

AE
=

200

102750 5XX









1

1
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[K]=7.5x105













11

11
 

We know that,    strain energy, U= *}]{[*}{
2

1
uku T

 

=
2

1
[u1 u2] x 7.5x105














11

11









2

1

u

u
 

=
2

1
[0.5  0.625]x7.5x105














11

11









625.0

5.
 

=
2

1
[0.5  0.625]x7.5x105 













625.05.0

625.05.0
 

=

2

1
 x7.5x105 [0.5  0.625]  









125.0

125.0
 

=

2

1
 x7.5x105 [0.5x(-0.125)+0.625x0.125] 

Strain energy, U=5859.37 N-mm 

Result:  

(i) U=05781mm 

(ii) E=6.25x10-4= 

(iii) σ=125N/mm2 

(iv) [k]=7.5x105 

(v) U=5859.37N-mm 

12. Consider a bar as shown in fig. an axial load of 200Knis applied at point P. take 

A1=2400mm2
, E1=70x109 N/m2. Calculate the following; 

(i) The nodal displacement at point, P. 

(ii) Stress in each material. 

(iii) Reaction force.       

(AU May/June 2005, April/May 2011) 
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Given 

 Area of element (1), A1=2400mm2 

 Area of lement (2) , A2=600 mm2+ 

 Length of element (1), l1=300mm 

 Length of element (2), l2=400mm 

 Young’s modulus (1), E1=70x109N/m2 

    =70x103 N/mm2 

 Young’s modulus (2), E2=200X109 N/m2 

      =200x103 N/mm2 

 Point load, P=200kN=200x103 N 

To find:  

(i) The nodal displacement at point, P. 

(ii) Stress in each material. 

(iii) Reaction force. 

Solution: finite element equation for dimensional two noded bar element is given by, 

l

AE

F

F










2

1














11

11









2

1

u

u

 
For element 1: 

Finite element equation is,  

1

11

l

EA













11

11









2

1

u

u
= 









2

1

F

F

 






























2

1

2

1
3

11

11

300

10702400

F

F

u

uXX

 








































2

1

2

1

2221

1211

5

6.56.5

6.56.5
101

F

F

u

u

aa

aa

X

…………. (1)

 

For element  2: (nodes 2,3) : Finite element equation is, 
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2

22

l

EA













11

11









3

2

u

u
= 









3

2

F

F

 






























3

2

3

2
3

11

11

400

10200600

F

F

u

uXX

 








































3

2

3

2

3332

2322

5

33

33
101

F

F

u

u

aa

aa

X

   ……….. (2)

 

Assemble the finite elemen. Assemble the finite element equations (1) and (2) 

 


































































3

2

1

3

2

1

5 1

330

333231

336.56.5

232221

06.56.5

131211

101

F

F

F

u

u

u

aaa

aaa

Aaa

X

 
























































3

2

1

3

2

1

5

330

36.86.5

06.56.5

101

F

F

F

u

u

u

X

 

            [k] 

[note: the bar has 3 nodes. Each node has single degree of freedom. So the global stiffness [k] size 

is 3x3. The properties of the stiffness matrix are also satisfied. 

(i) [k]  matrix is symmentric. 

(ii) The sum of element in any column is equal to zero. 

 

Applying boundary conditions: 

 Displacement at nodes 1 and node 3 are zer. So, u1=u2=0. A load of 200 acting at node 

2.so, F2 and F3 values in equation  (3) 
























































0

102

0

0

0

330

36.86.5

06.56.5

101 5

2

5 XuX
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In the above  equation, u1=0, so, neglect first row and first column of [k] matrix. So, 

 negelectthrird row and third column of [k] matrix. The final reduced equation. 

1x105 [8.6] {u2}={2x105} 

8.6x105 u2=2x105 

8.6 u2=2 

u2=0.2325mm 

stress in each element: 

we know that,   stress, σ=E (du/dx)  

For element (1), stress σ1=E1x [(u2-u1)/l1]  

   σ1=54.25 N/mm2. 

For element (2), stress σ2=E2x [(u3-u2)/l2]  

   σ2=-116.25 N/mm2. 

Reaction force: we know that,  

Reaction force, {R}=[k] {u*} – {F} 









































































3

2

1

3

2

1

5

3

2

1

330

36.86.5

06.56.5

101

F

F

F

u

u

u

X

R

R

R

 









































































0

102

0

0

2325.0

0

330

36.86.5

06.56.5

101 55

3

2

1

XX

R

R

R

 

=









































0

102

0

0)2325.0(30

0)2325.0(6.80

02325.0(6.50

101 55 XX  

=







































0

102

0

106975.0

0

10302.1
5

5

5

X

X

X

 

  
















3

2

1

R

R

R





















5

5

106975.0

0

10302.1

X

X

 

 R1=-1.302x105 

 R2=0N 

 R3=-0.6975x105 

We know that, reaction is equivalent and opposite to the applied force. 
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Verification: R1+R2+R3=-1.302x105+0-0.6975x105 

        =-200x103 N (applied force) 

Result:  

1. nodal displacement p, u2=0.2325 mm 

2.  stress in each material, σ1=54.25 N/mm2(tensile) 

   σ2=-116.25 N/mm2(compressive) 

3.  reaction force, R1 = -1.302x105; R2=0 

    R3=-0.6975x105 N 

13. A thin steel plate of uniform thickness 25mm is subjected to a post load of 420N at mid 

depth as shown in fig. the plate is also subjected to self-weight. Young’s modulus, 

E=2x105N/mm2. And unit weight density, ρ=0.8x10-4 N/mm2. Calculate the following. 

(i) Displacement at each nodal point. 

(ii) Stresses in each element.      (16) 

 

Given:  

  Thickness t = 25mm 

For element 1: Area, A1 = 100 * 25 = 2500 mm2 

For element 2: Area A2 = 80 * 25 = 2000 mm2 

 Point load, p = 420 N 
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Young’s modulus, E = 2 * 105 N/mm2 

Unit weight density, ρ = 0.8 * 10-4 N/mm3 

To find 

i. Displacement at each nodal point, u1, u2 and u3 

ii. Stress in each element, σ1 and σ2 

Solution: 

 The steel plate is subjected self – weight. So, we have to find body force acting at nodal point 1, 

2 and 3. 

W.k.t, body force vector,  









1

1

2

Al
F


 

For element 1: force vector 

















1

1

2

111

2

1 lA

F

F 
 










































 

20

20

1

1
20

1

1

2

200*2500*10*8.0

2

1

4

2

1

F

F

F

F

 

For element 2: force vector 

















1

1

2

222

3

2 lA

F

F 
 










































 

16

16

1

1
16

1

1

2

200*2000*10*8.0

3

2

4

3

2

F

F

F

F

 

Assembling the force vector, 



















































16

36

20

16

1620

20

3

2

1

F

F

F

 

A point load of 420 N is acting at mid depth, at nodal point 2 as shown in fig, so add 420 N in F2 

vector. 



UNIT-II/ ONE-DIMENSIONAL PROBLEMS  P a g e  | 28 
 

ME8692 FINITE ELEMENT ANALYSIS   
 



































































16

456

20

 vector force Global

16

42036

20

3

2

1

3

2

1

F

F

F

F

F

F

 

Finite element equation for one dimensional plate element is given by, 






























2

1

2

1

11

11

u

u

l

AE

F

F

 

For element 1: nodes 1, 2 

Finite element equation is 
























































































2

15

2

1

2

1
5

2

1

2

1

1

1

2

1

5.125.12

5.125.12
10*2

11

11

200

10*2*2500

11

11

u

u

F

F

u

u

F

F

u

u

l

EA

F

F

 

For element 2: nodes 2, 3 

Finite element equation is 
























































































3

25

3

2

3

2
5

3

2

3

2

2

2

3

2

1010

1010
10*2

11

11

200

10*2*2000

11

11

u

u

F

F

u

u

F

F

u

u

l

EA

F

F

 

Assembling the finite element equation 1 and 2 
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













































































































3

2

1

3

2

1

5

3

2

1

3

2

1

5

10100

105.225.12

05.125.12

10*2

10100

10105.125.12

05.125.12

10*2

F

F

F

u

u

u

F

F

F

u

u

u

 

Apply boundary condition at node 1, displacement u1 = 0, substitute u1, F1, F2 and F3 values in the 

above matrix. 
























































16

456

200

10100

105.225.12

05.125.12

10*2

3

2

5

u

u  

Neglect the first row and first column in the above matrix 

456)1025.2(10*2

16

456

1010

105.22
10*2

32

5

3

25
































uu

u

u

 

16)1010(10*2 32

5  uu  

u3 = 1968 *10-4 

u2 = 1.88 * 10-4 

Stresses in each element  

We know that,  

Stress,  
dx

du
E  

For element 1: 
2

4
5

1

12
1 /188.0

200

010*88.1
*10*2 mmN

l

uu
E 









  

For element 2: 
2

44
5

2

23

2 /008.0
200

10*88.110*968.1
*10*2 mmN

l

uu
E 









  



UNIT-II/ ONE-DIMENSIONAL PROBLEMS  P a g e  | 30 
 

ME8692 FINITE ELEMENT ANALYSIS   
 

14. Consider the bar as shown in fig. Take E = 2*105 N/mm2; p = 400 kN. Calculate the 

following. 

(i) Nodal displacement 

(ii) Element stresses. 

(iii) Support reactions.((May/June 2005) 

 

Given: 

 Area of element 1 (A1) = 300 mm2 

Area of element 2 (A2) = 300 mm2 

Area of element 3 (A3) = 600 mm2 

Length of element 1 l1 = 200 mm 

Length of element 2 l2 = 200 mm 

Length of element 3 l3 = 400 mm 

Young’s modulus E = 2*105 N/mm2 

Point load, p = 400 kN 

 To find 

i. Nodal displacements, u1, u2, u3 and u4 

ii. Element stresses, σ1, σ2 and σ3 

iii. Reactions at the support R1 and R4 

Solution: 

 Finite element equation for one dimensional two noded bar element is 
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




























2

1

2

1

11

11

u

u

l

AE

F

F

 

For element 1: nodes 1, 2 

Finite element equation is 
























































































2

15

2

1

2

1
5

2

1

2

1

1

1

2

1

33

33
10*1

11

11

200

10*2*300

11

11

u

u

F

F

u

u

F

F

u

u

l

EA

F

F

 

For element 2: nodes 2, 3 

Finite element equation is 
























































































3

25

3

2

3

2
5

3

2

3

2

2

2

3

2

33

33
10*1

11

11

200

10*2*300

11

11

u

u

F

F

u

u

F

F

u

u

l

EA

F

F

 

For element 3: nodes 3, 4 

Finite element equation is 
























































































4

35

4

3

4

3
5

4

3

4

3

1

1

4

3

33

33
10*1

11

11

400

10*2*600

11

11

u

u

F

F

u

u

F

F

u

u

l

EA

F

F

 

Assembling the finite element equation 1, 2 and 3 
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























































































































































4

3

2

1

4

3

2

1

5

4

3

2

1

4

3

2

1

5

3300

3630

0363

0033

10*1

3300

33330

03333

0033

10*1

F

F

F

F

u

u

u

u

F

F

F

F

u

u

u

u

 

Applying boundary conditions: 

i. Node 1 and node 4 are fixed, u1 and u4 = 0. 

j. 400*103 N is acting at node 2. F2 = 400*103 N 

k. Self weight is neglected, F1 = F3 = F4 = 0. 

Substituting the boundary values in the above matrix 

mmu

mmu

uu

uu

u

u

u

u

44.0

88.0

0)63(10*1

10*400)36(10*1

0

10*400

63

36
10*1

0

0

10*400

0

0

0

3300

3630

0363

0033

10*1

3

2

32

5

3

32

5

3

3

25

3

3

25


















































































































 

  

Stresses in each element  

We know that,  

Stress,  
dx

du
E  

For element 1: 25

1

12
1 /8.888

200

088.0
*10*2 mmN

l

uu
E 





  

For element 2: 25

2

23
2 /44.444

200

88.044.0
*10*2 mmN

l

uu
E 





  
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For element 3: 25

3

34
3 /22.222

400

44.00
*10*2 mmN

l

uu
E 





  

Reaction force in each element  

We know that, 

 Reaction force, {R} = [k] {u*} – {F} 










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

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
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
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
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
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
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
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

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
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
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
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
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
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
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

































































































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































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
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









































































































































































































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5

4

3

2
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3

5

5

5

4

3

2

1

3

5

4

3

2

1

3

5

4

3

2
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3

5

4

3

2

1

4

3

2

1

4

3

2

1

5

4

3

2

1

10*33.1

0

0

10*67.2

0

0

10*400

0

10*33.1

0

10*4

10*67.2

0

0

10*400

0

33.1

0

4

67.2

10*1

0

0

10*400

0

044.0*300

044.0*688.0*30

044.0*388.0*60

0088.0*30

10*1

0

0

10*400

0

0

44.0

88.0

0

3300

3630

0363

0033

10*1

3300

3630

0363

0033

10*1

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

F

F

F

F

u

u

u

u

R

R

R

R

 

R1 = -2.67 * 103 N; R2 = 0; R3 = 0; R4 = -1.33*105 N 

15. Consider a taper steel plate of uniform thickness, t=25mm as shown in fig. the young’s 

modulus of the plate, E=2x105 N/mm2 and weight density, ρ=0.82x10-4 N/mm3. In addition 
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to its self-weight, plate is subjected to a point load P=100N at its mid point. Calculate the 

following by modeling the plate with two finite elements. 

(i) Global force vector { F} 

(ii) Global stiffness matrix [k] 

(iii) Displacement force at the support. 

(iv) Stresses in each element. 

(v) Reaction force at the support.(M.E Aero Engg Dec 2006) 

 

Given: in this problem, the area of the element is varying at each cross-sectional consider 

this area variation, the problem will be tedious, so. The given taper bar as stepped bar as 

shown in fig below. 

 

Solution: area at nodal 1, A1=width x thickness= W1xt1=150x75 



UNIT-II/ ONE-DIMENSIONAL PROBLEMS  P a g e  | 35 
 

ME8692 FINITE ELEMENT ANALYSIS   
 

A1=3750mm2 

Area at node 2,    A2=W2xt2 

= X
WW








 

2

31 t2= 






 

2

75150
x2 

A2=2812.5mm2 

Area at node 3,   A3 = W3xt3=75x25 

A3=1875mm2 

Average area of element (1): A (area at node, 1+area at node, 2)/2 

 A (3750+2812.5)/2 

1A 3281.25mm2 

Average area of element (2): A (area at node, 2+area at node, 3)/2 

A (2812.5+1875)/2 

2A 2343.75mm2 

Young’s modulus, E=2x105 N/mm2 

Weight density, ρ=0.82x10-4 N/mm3, length, l=300mm 

Point load, P=100N. 

To find: 

1. Global force vector { F} 

2. Global stiffness matrix [k] 

3. Displacement force at the support. 

4. Stresses in each element. 

5. Reaction force at the support. 

Solution: the steel plate is subjected to self-weight. So, we have to find the body force acting 

at nodal points 1,2 and 3 

We know that, body force vector, {F}=








1

1

2

Al
 



UNIT-II/ ONE-DIMENSIONAL PROBLEMS  P a g e  | 36 
 

ME8692 FINITE ELEMENT ANALYSIS   
 

For element (1): force vector, 








2

1

F

F









1

1

2

111 lA

 

 

     =
2
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

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



1

1
 

     =40.359x








1
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







2

1

F

F








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For element (2): force vector, 








3

2

F

F









1

1

2

222 lA

 

 

     =
2

30075.23431082.0 4 XXx 









1

1
 

     =28.828 








1

1
 

    








3

2

F

F









828.28

828.28
 

Assembling the force vector, assemble the equation (1) and (2), 
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





































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
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



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359.40

828.28
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3

2

!

F

F

F

 

A point load of 100 N is acting at node 2 as shown in fig. so, add 100N in F2 vector, 

 






















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








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2
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Global force vector, 

































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359.40

3

2

!

F

F

F

 

Finite element equation for one dimensional plate element is given by,  









2

1

F

F
=





















2

1

11

11

u

u

l

AE
 

For elment1: (node 1,2) finite element equation is, 





















2

1

11

11

u

u

l
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=









2

1

F
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


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
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1
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
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2
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
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
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
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










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







2

1

937.10937.10
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u

u
=









2

1

F

F
……….(4) 

 For element2 (nodes 2, 3): finite element equation is , 












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






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2
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u
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UNIT-II/ ONE-DIMENSIONAL PROBLEMS  P a g e  | 38 
 

ME8692 FINITE ELEMENT ANALYSIS   
 

300

10275.2343 5XX
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
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
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
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
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
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
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
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
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u

u
=


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


3

2

F

F
…………(5) 

Assembling the finite element equation 

5102X
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






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









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


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
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

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5102X
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
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
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




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Apply the boundary conditions, at node 1, displacement u1=0 substitute and F3 values in 

equation (6) 

2X105






























828.28

187.169

8125.78125.7

8125.7749.18

3

2

u

u
 

2X105(18.749u2-7.8125u3)=169.187 

2X105(-7.8125u2=7.8125u3)=28.828 

Solving, 2x105x(10.936)u2=198.015 

u2=9.053x10-5mm 

Substitute u2 value in equation (7),  

2x105 [18.749(9.653x10-5)-7.8125u]=169.187 

18.749x9.053x10-5-7.8125u3=-8.514x10-4 

 u3=10.898x10-5 

We know that, stress, σ=0.060 N/mm2 



UNIT-II/ ONE-DIMENSIONAL PROBLEMS  P a g e  | 39 
 

ME8692 FINITE ELEMENT ANALYSIS   
 

  σ1=Ex
1

12

l

uu 
=2x105x 300

)010053.9( 5 X
 

 =
300

)10053.910898.10(102 555  XXXXX
 

 σ2=0.0123 N/mm2 

Reaction force: we know that, 

 Reaction force, {R} = [k] {u*}-{F} 

















3

2

!

R

R

R
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


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


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









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


















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











3

2

1

3

2
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F

F

F

u

u
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

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
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


































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0

8125.78125.70
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5
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X

X  
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

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
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












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
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




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4

4

4

X

X
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=





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























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359.40
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















3

2

!

R

R

R

=

















0

0

739.238

 

R1=-238.379  

R2=0 N 

R3=0 N 

We know that, reaction force is equivalent and opposite to the applied force. 

Verification:  R1+R2+R3= -238.379+0+=-238.379N 
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Applied force F1+ F2F3=40359+169.187+28.828=238.37N 

 Result: 

(i)  {F}=

















828.28

187.169

359.40

 

 

(ii) [k]= 2X105























8125.78125.70

8125.7749.18937.10

0937.1010937

 

(iii) u1=0 

u2=9.053x10-5 mm 

u3=10.989x10-5mm 

(iv) σ1=0.060 N/mm2 

σ2=0.0123 N/mm2 

(v) R1=-238.739N 

R2=0  N. 

R3=0  N. 

16. The structure shown in fig. is subjected to an increase in temperature of 80◦C. determine 

the displacements, stresses and support reactions. Assume the following data; 

(Jan 2007,M.E(Engg. Design) 

 
 

Bronze Aluminium Steel 

A=2400mm2 1200 mm2 600 mm2 

E=83Gpa 70Gpa 200Gpa 

Α=18.9x10-6/◦C 23 x10-6/◦C 11.7 x10-6/◦C 

 

Given:  
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 P1=60kN=-60X103N 

 P2=75kN=-75X103N 

CT 80  

 l1=800mm 

 l2=600mm 

 l3=400mm 

For bronze: A1=2400mm2 

       E1=86Gpa=83x103 N/mm2 

           =83x109 N/m2=83x103pa 

       α1=18.9x10-6/ C  

For aluminum: 

         A2=1200mm2 

       E2=70Gpa=83x103 N/mm2 

           =70x109 N/m2=70x103pa 

       α2=23x10-6/ C  

For steel:  A3=2400mm2 

       E3=200Gpa=200x103 N/mm2 

           =200x109 N/m2=83x103pa 

       α3=11.7x10-6/ C  

To find: 

1. Displacement at each node, u1, u2,  u3 and u4 

2. Stresses in each element, σ1,σ2,σ3. 

3. Support reaction, R1 and R4. 

Solution: finite element equation for the one dimensional two noded bar element is given by,  
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For element 1: (node 1.2): 
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Finite element equation is,  














11

11

l

AE









2

1

u

u
=









2

1

F

F
 

800

10832400 3XX













11

11









2

1

u

u
=









2

1

F

F
 

103














249249

249249









2

1

u

u
=









2

1

F

F
 

For element 2: (node 2, 3) 

Finite element equation is,  
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For element 3: (node 3, 4) 

Finite element equation is,  
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Assembling the equation (1) (2), and (3) 

103

 


























30030000

3003001401400

0140140249249

00249249

X

























4

3

2

1

u

u

u

u

=

























4

3

2

1

F

F

F

F

 



UNIT-II/ ONE-DIMENSIONAL PROBLEMS  P a g e  | 43 
 

ME8692 FINITE ELEMENT ANALYSIS   
 

103
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Assembling  the {F} matrix: 

We know that, load factor, {F} =EAα  T 

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For element (2): 
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For element (3): 
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Assemble the equation (5), (6) and (7)  
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















F

F

F

F

X































32.112

32.11256.154

56.1541904.301

1904.301

 



UNIT-II/ ONE-DIMENSIONAL PROBLEMS  P a g e  | 44 
 

ME8692 FINITE ELEMENT ANALYSIS   
 

4

4

3

2

1

10

























F

F

F

F

X

























32.112

24.42

6304.146

1904.301

 

 From the fig, we know that, axial load of 60x103= N is acting at node 2 and 75x103N is act in F2 at node 

3, so, subtract 60x103 N in F3 vector.  

4

4

3

2

1

10

























F

F

F

F

X































32.112

7524.42

606304.146

1904.301

 

4

4

3

2

1

10

























F

F

F

F

X





























32.112

76.32

6304.86

1904.301

 

Substitute equation (8) in equation (4), 

103



























30030000

3004401400

0140389249

00249249

























4

3

2

1

u

u

u

u

=103X





























32.112

76.32

6304.86

1904.301

 

Applying the boundary condition, at node 1, u1=0 and node 4, u2=0, substitute u1and u4 values in the 

above equation. 

















































































32.112

76.32

6304.86

1904.301

0

0

30030000

3004401400

003898249

00249249

3

2

u

u
 

In the above equation, u1=0. So,  neglect first row and first column of [k] matrix. u4=0, so, neglect fourth 

row and forth column of [k] matrix. hence the equation reduce to 
































76.32

6304.86

440140

140389

3

2

u

u
 

389u2-140u3=86.6304 

-140u2+440u3=-32.76 

 

1222.571u1-440u3=272.2707 

-140u2+440u3=-32.76 

Solving, 1082.571u2=239.51 

u2=0.2212 mm 

Substitute u2 value in equation, 
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    -140(0.2212)+440u3=-32.44 

u3=-0.00345mm 

we know that, thermal stress, σ=E
𝑑𝑢

𝑑𝑥
-Eα T  

for element (1),    σ1= TE
l

uuE



11

1

121 )(
  

    = 80109.181083
800

)02212.0(1083
63

3

XXXX
X




 

   σ1=-102.5455 N/mm2 

 

for element 2:   σ2= TE
l

uuE



22

2

232 )(
  

σ2=-155.009 N/mm2 

for element 3:  

σ3= TE
l

uuE



33

3

343 )(
  

σ3=-185.475 N/mm2. 

we know that, reaction force {R}=[k] {u*} –{F} 

























4

3

2

1

R

R

R

R

=103=



























30030000

03001400

0140389249

00249249

























4

3

2

1

u

u

u

u

-

























4

3

2

1

F

F

F

F

 

 

=103



























30030000

03001400

0140389249

00249249



























0

00345.0

2212.0

0

-103





























32.112

75.32

6304.86

1904.301

 

=103



























0)00345.0(30000

0)00345.0(4402212.01400

0)00345.0(1402212.03890

002212.02490

X

XX

XX

X

-103





























32.112

75.32

6304.86

1904.301

 

=103





























035.1

486.32

5018.86

0788.55

-103





























32.112

76.32

6304.86

1904.301
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























4

3

2

1

R

R

R

R

=103X

























 35.113

0

0

1116.246

 

R1=246.1116X103N 

R2=0 

R3=0 

R4=-113.35X103 N. 

17. A spring assemblage with arbitrary numbered nodes are shown in fig. the nodes 1 and 2 

arefixed and a force of 500kN is applied at node 4 in the x –directions. Calculate the 

following. 

(i) Global stiffness matrix. 

(ii) Nodal displacement  

(iii) Reactions at each nodal point. 

 

Given: 

Nodal force, F4 = 500kN 

Spring constant, k1 =100 kN/m; k2 = 200 kN/m; k3 = 300 kN/m 

To find: 

i) Global stiffness matrix [k] 

ii) Nodal displacements, u1, u2, u3 and u4 

iii) Reactions at each nodal point, R1, R2, R3 and R4 

Solution: 

Finite element equation for spring element is 

1 1

2 2

1 1

1 1

F u
k

F u

    
    

    
 

For element 1: node 1,3, the finite element equation is 
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1 1

1

3 3

1 1

3 3

1 1

3 3

1 1

1 1

1 1
100

1 1

100 100

100 100

u F
k

u F

u F

u F

u F

u F

     
    

     

     
    

     

     
    

     

 

For element 2: node 3,4, the finite element equation is 

3 3

2

4 4

3 3

4 4

3 3

4 4

1 1

1 1

1 1
200

1 1

200 200

200 200

u F
k

u F

u F

u F

u F

u F

     
    

     

     
    

     

     
    

     

 

For element 3: node 4,2, the finite element equation is 

4 4

3

2 2

4 4

2 2

4 4

2 2

1 1

1 1

1 1
300

1 1

300 300

300 300

u F
k

u F

u F

u F

u F

u F

     
    

     

     
    

     

     
    

     

 

Assembling element 1, 2 and 3 

1 1

2 2

3 3

4 4

1 1

2 2

3 3

4 4

100 0 100 0

0 300 0 300

100 0 200 100 200

0 300 200 200 300

100 0 100 0

0 300 0 300

100 0 300 200

0 300 200 500

u F

u F

u F

u F

u F

u F

u F

u F

     
    

         
       
            

     
   

       
     
         







 

Applying boundary conditions: 
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At node 1,u1 = 0 

At node 2, u2 = 0 

Nodal forces, F1 = F2 = F3 = 0 

F4 = 500 kN  

 Substitute F1, F2, F3 and F4, u1 and u2 values in assembled matrix  

3

4

0100 0 100 0 0

00 300 0 300 0

100 0 300 200 0

0 300 200 500 500

u

u

     
    

         
      
          

 

In the above matrix u1 = 0, u2 = 0, so we neglect the first and second row and column of 

the above matrix. Then the matrix becomes 

3

4

300 200 0

200 500 500

u

u

     
    

    
 

300u3 – 200u4 = 0 

-200 u3 + 500 u4 = 500 

Solving the above equation, 

u4 = 1.364 m; u3 = 0.9091 m 

 W.k.t, reaction force,  {R} = [k]{u*}-{F} 
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1 1 1

2 2 2

3 3 3

4 4 4

1

2

3

4

100 0 100 0

0 300 0 300

100 0 300 200

0 300 200 500

100 0 100 0 0

0 300 0 300

100 0 300 200

0 300 200 500

R u F

R u F

R u F

R u F

R

R

R

R

      
      

            
       
             

   
   

    
   
      

1

2

3

4

1

2

3

4

0

0 0

0.9091 0

1.364 500

0 0 100(0.9091) 0 0

0 0 0 300(1.364) 0

0 0 300(.9091) 200(1.364) 0

0 0 200(0.9091) 500(1.364) 500

R

R

R

R

R

R

R

R

   
   
   

   
   
      

       
     

          
      
          








1

2

3

4

90.91 0

409.2 0

0 0

500 500

90.91

409.2

0

0

R

R

R

R

    
    

      
    
       

   
   

    
  
     

 

R1= -90.91 

R2 = -409.2 

R3 = 0 

R4 = 0 

W.k.t, reaction force is equivalent and opposite to the applied force. 

R1 + R2 + R3 + R4 = -90.91 - 409.2 + 0 + 0 = -500 Kn 
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SOLID MECHANICS PROBLEMS 

18. Derive the stiffness matrix [k] for a truss element. 

 

Consider a two noded bar for the analysis of truss. Truss is subjected to axial forces and 

axial displacements. 

The nodal displacement for this bar element is given by 

  1

2

'
'

'

u
u

u

 
  
 

 

W.k.t  

u1’=u1cosθ+u2sinθ 

u2’=u3cosθ+u4sinθ 

Let us take l and m as direction cosines, l=cosθ and m = sin θ 

u1’=u1l+u2m 

u2’=u3l+u4m 

Changing the above equation into matrix form 

 

1

1 2

2 3

4

' 0 0

' 0 0

' [ ]{ }

0 0
 [L] =

0 0

u

u ul m

u ul m

u

u L u

l m
where

l m

 
 

     
    
    

  



 
 
 

 

L is called transformation matrix. 

Let us assume (x1, y1) and (x2, y2) be the co-ordinates of nodes 1 and 2. 

We can find l, m and le values by using the following formulae. 
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l = cosθ = 2 1

e

x x

l


 

m = sinθ= 2 1

e

y y

l


 

le =    
2 2

2 1 2 1x x y y    

The stiffness matrix for two noded bar element is given by, 

[k’] = 
1 1

1 1

e e

e

A E

l

 
 
 

 

Strain energy, U =  
1

2
{u’}T [k] {u’} 

W. k. t 

 {u’} = [L] {u} 

Substitute {u’} in the equation, 

 

       

       

    

1
'

2

1
'

2

1

2

 [ ] [ ] [ '][ ]

T

T T

T

T

U L u k L u

U L u k L u

U u u k

where k L k L









 

Element stiffness matrix in global co-ordinates 

[k] = [L]T[k’][L] 

Substitute [L] and [k’] value from equation. 
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 

 

 

 

0

0 1 1 0 0

0 1 1 0 0

0

0

0 1 1 0 0

0 1 1 0 0

0

0

0 0 0 0 0

0 0 0 0 0

0

0

0

0

0

e e

e

e e

e

e e

e

e e

e

l

m l mA E
k

l l ml

m

l

m l mA E
k

l l ml

m

l

m l m l mA E
k

l l m l ml

m

l

m l m lA E
k

ll

m

 
 

             
 
 

 
 

             
 
 

 
 

               
 
 

 
 


 
 
 
 

 

2 2

2 2

2 2

2 2

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

e e

e

m

l m l m

l lm l lm

lm m ml mA E
k

l l lm l lm

lm m lm m

 
 
  

      
 

      
    
 
    

 

 

2 2

2 2

2 2

2 2

e e

e

l lm l lm

lm m ml mA E
k

l l lm l lm

lm m lm m

  
 

  
  
 
    

[k] – matrix is symmetric. 

Formulation of finite element equation for two noded stress element. 

General equation 

  {F} = [k] {u} 

 Where, {F} – element force vector 

   [k] – stiffness matrix 

  {u} – nodal displacement 

For truss element stiffness  matrix is 
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 

2 2

2 2

2 2

2 2

e e

e

l lm l lm

lm m ml mA E
k

l l lm l lm

lm m lm m

  
 

  
  
 
    

Substitute [k] value in the general equation, 

  

2 2
1 1

2 2
2 2

2 2
3 3

2 2
4 4

e e

e

F ul lm l lm

F ulm m ml mA E

F ul l lm l lm

F ulm m lm m

     
    

        
     
 

          

 

19. For the two bar truss in fig. determine the displacement of node 1 and the stress in element 

1-3.(May/June 2011) 

 

Given:  

 Young’s modulus,  E = 70GPa = 70 * 103 N/mm2 

 Area A = 200 mm2 

Point load at node 1 = 12 kN = 12 * 103 N 
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To find: 

a. Displacements of node 

b. Stress in element 

Solution: 

 The co-ordinates of various nodes are, 

 Node 1 = (x1, y1) = (0 , 0) 

 Node 2 = (x2, y2) = (-50, 0) 

 Node 3 = (x3, y3) = (400, -300) 

For element 1: 

 Length, le1 =    
2 2

2 1 2 1x x y y    

   =    
2 2

500 0 0 0     

  le1 = 500 mm 

 Direction cosines, l1 = 2 1

1e

x x

l


 

    =  
500 0

500

 
 

    l1 = -1  
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m1 = 2 1

1e

y y

l


 

    =  
0 0

500


 

    m1 = 0 

For element 2: 

 Length, le2 =    
2 2

3 1 3 1x x y y    

   =    
2 2

400 0 300 0     

  le2 = 500 mm 

 Direction cosines, l2 = 3 1

2e

x x

l


 

    =  
400

500
 

    l2 = 0.8  

m2 = 3 1

2e

y y

l


 

    =  
300 0

500

 
 

    m2 = - 0.6 

For element 1: displacements (u1, u2, u3 and u4) 

Stiffness matrix [k] for truss element is given by 

 

2 2

1 1 1 1 1 1

2 2

1 1 1 1 1 11 1

2 21
1 1 1 1 1 1 1

2 2

1 1 1 1 1 1

e

l l m l l m

l m m l m mA E
k

l l l m l l m

l m m l m m

  
 

  
  
 
   
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 
3

1

1 0 1 0

0 0 0 0200*70*10

1 0 1 0500

0 0 0 0

k

 
 
 
 
 
 

 

  3

1

1 0 1 0

0 0 0 0
28*10

1 0 1 0

0 0 0 0

k

 
 
 
 
 
 

 

for element 2: displacements (u1, u2, u5 and u6) 

stiffness matrix [k] for truss element is given by 

 

2 2

2 2 2 2 2 2

2 2

2 2 2 2 2 22 2

2 22
2 2 2 2 2 2 2

2 2

2 2 2 2 2 2

e

l l m l l m

l m m l m mA E
k

l l l m l l m

l m m l m m

  
 

  
  
 
   

 

 
3

2

.64 0.48 0.64 0.48

0.48 0.36 0.48 0.36200*70*10

0.64 0.48 0.64 0.48500

0.48 0.36 0.48 0.36

k

  
 
 
 
  
 

  

 

  3

2

.64 0.48 0.64 0.48

0.48 0.36 0.48 0.36
28*10

0.64 0.48 0.64 0.48

0.48 0.36 0.48 0.36

k

  
 
 
 
  
 

  

 

Assembling the stiffness matrix [k] 

  3

1 0.64 0 ( 0.48) 1 0 0.64 0.48

0 ( 0.48) 0 0.36 0 0 0.48 0.36

1 0 1 0 0 0
28*10

0 0 0 0 0 0

0.64 0.48 0 0 0.64 0.48

0.48 0.36 0 0 0.48 0.36

k

     
 
   

 
 

  
 
  
 

  
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  3

1.64 0.48 1 0 0.64 0.48

0.48 0.36 0 0 0.48 0.36

1 0 1 0 0 0
28*10

0 0 0 0 0 0

0.64 0.48 0 0 0.64 0.48

0.48 0.36 0 0 0.48 0.36

k

   
 
 
 
 

  
 
  
 

  

 

W.k.t, General finite element equations is, 

  {F} = [k] {u} 

  [k] {u} = {F}  

1 1

2 2

3 33

4 4

5 5

6 6

1.64 0.48 1 0 0.64 0.48

0.48 0.36 0 0 0.48 0.36

1 0 1 0 0 0
28*10

0 0 0 0 0 0

0.64 0.48 0 0 0.64 0.48

0.48 0.36 0 0 0.48 0.36

u F

u F

u F

u F

u F

u F

       
    

 
    
        

    
    
     
    

          

 

 Applying boundary conditions: 

a. Node 2 is fixed, so u3 = u4 = 0 

b. Node 3 is fixed, so u5 = u6 = 0 

c. A point load of 12*103 N is acting at  node 1 is downward  direction. So, F2 = -

12*103 N 

d. Self weight is neglected. So F1 = F3 = F4 = F5 = F6 = 0 

 Substitute the above boundary conditions  in the assembled matrix 

1

3

2

3

1.64 0.48 1 0 0.64 0.48 0

0.48 0.36 0 0 0.48 0.36 12*10

1 0 1 0 0 0 0 0
28*10

0 0 0 0 0 0 0 0

0.64 0.48 0 0 0.64 0.48 0 0

0.48 0.36 0 0 0.48 0.36 0 0

u

u

       
     
  
     
     

    
    
     
    

      

 

Neglecting the rows and columns 
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13

3

2

1.64 0.48 0
28*10

0.48 0.36 12*10

u

u

     
    

     
 

28*103(1.64u1-0.48u2)=0 

28*103(-0.48u1+0.36u2)=-12*103 

 Solving the above equation 

   u1 = -0.571mm; u2 = -1.952 mm 

 For element 1: 

   Stress σ1 =  

1

21

31

4

e

u

uE
l m l m

ul

u

 
 
 

   
 
  

  

 For element 2: 

   Stress σ2 =  

1

22
2 2 2 2

52

6

e

u

uE
l m l m

ul

u

 
 
 

   
 
  

  

     

 
3

2

2

0.571

1.95270*10
0.8 0.6 0.8 0.6

0500

0

140[( 0.8)*( 0.571) 0.6*( 1.952) 0 0]

100 /N mm

 
 
 

    
 
  

      

  

 

 

20. Consider a three bar truss as shown in fig. it is given that E=2x10-5 N/mm2 calculate the 

following; 

(i) Nodal displacement 

(ii) Stress in each member 

(iii) Reactions at the support. 
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Take :  young’s modulus,E=2x105 N/mm2 

Area of element (1)=2000mm2 

            Area of element (2)=2500mm2 

 Area of element (3)=2500mm2  

 To find,   

i. Nodal displacements, u1, u2, u3, u4, u5 and u6 

ii. Stress in each member, σ1, σ2 and σ3 

iii. Reactions at the support R1, R2, R3, R4, R5 and R6 

Solution: 

 The co-ordinates of various nodes are, 

 Node 1 = (x1, y1) = (0 , 0) 

 Node 2 = (x2, y2) = (1000, 0) 

 Node 3 = (x3, y3) = (500, 500) 

For element 1: 

 Length, le1 =    
2 2

2 1 2 1x x y y    

   =    
2 2

1000 0 0 0    

  le1 = 1000 mm 

 Direction cosines, l1 = 2 1

1e

x x

l


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    =  
1000 0

1000


 

    l1 = 1  

m1 = 2 1

1e

y y

l


 

    =  
0 0

1000


 

    m1 = 0 

For element 2: 

 Length, le2 =    
2 2

3 2 3 2x x y y    

   =    
2 2

500 1000 500 0    

  le2 = 707.107 mm 

 Direction cosines, l2 = 3 2

2e

x x

l


 

    =  
500 1000

707.107


 

    l2 = -0.707  

m2 = 3 2

2e

y y

l


 

    =  
500 0

707.107


 

    m2 = 0.707 

For element 3: 

 Length, le3 =    
2 2

3 1 3 1x x y y    

   =    
2 2

500 0 500 0    
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  le3 = 707.107 mm 

 Direction cosines, l3 = 3 1

3e

x x

l


 

    =  
500 0

707.107


 

    l3 = 0.707  

m3 = 3 1

3e

y y

l


 

    =  
500 0

707.107


 

    m2 = 0.707 

 

For element 1: displacements (u1, u2, u3 and u4) 

Stiffness matrix [k] for truss element is given by 

 

2 2

1 1 1 1 1 1

2 2

1 1 1 1 1 11 1

2 21
1 1 1 1 1 1 1

2 2

1 1 1 1 1 1

e

l l m l l m

l m m l m mA E
k

l l l m l l m

l m m l m m

  
 

  
  
 
   

 

 
5

1

1 0 1 0

0 0 0 02000*2*10

1 0 1 01000

0 0 0 0

k

 
 
 
 
 
 

 

  5

1

1 0 1 0

0 0 0 0
4*10

1 0 1 0

0 0 0 0

k

 
 
 
 
 
 

 

for element 2: displacements (u3, u4, u5 and u6) 

stiffness matrix [k] for truss element is given by 
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 

2 2

2 2 2 2 2 2

2 2

2 2 2 2 2 22 2

2 22
2 2 2 2 2 2 2

2 2

2 2 2 2 2 2

e

l l m l l m

l m m l m mA E
k

l l l m l l m

l m m l m m

  
 

  
  
 
   

 

 
5

2

0.4998 0.4998 0.4998 0.4998

0.4998 0.4998 0.4998 0.49982500*2*10

0.4998 0.4998 0.4998 0.4998707.107

0.4998 0.4998 0.4998 0.4998

k

  
 
 
 
  
 

  

 

  5

2

0.4998 0.4998 0.4998 0.4998

0.4998 0.4998 0.4998 0.4998
7.07*10

0.4998 0.4998 0.4998 0.4998

0.4998 0.4998 0.4998 0.4998

k

  
 
 
 
  
 

    

for element 3: displacements (u1, u2, u5 and u6) 

stiffness matrix [k] for truss element is given by 

 

2 2

3 3 3 3 3 3

2 2

3 3 3 3 3 33 3

2 23
3 3 3 3 3 3 3

2 2

3 3 3 3 3 3

e

l l m l l m

l m m l m mA E
k

l l l m l l m

l m m l m m

  
 

  
  
 
   

 

 
5

3

0.4998 0.4998 0.4998 0.4998

0.4998 0.4998 0.4998 0.49982500*2*10

0.4998 0.4998 0.4998 0.4998707.107

0.4998 0.4998 0.4998 0.4998

k

  
 
 
 
  
 

  

 

  5

3

0.4998 0.4998 0.4998 0.4998

0.4998 0.4998 0.4998 0.4998
7.07*10

0.4998 0.4998 0.4998 0.4998

0.4998 0.4998 0.4998 0.4998

k

  
 
 
 
  
 

  

 

 

Assembling the stiffness matrix [k] 
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  5

4 3.534 0 3.534 4 0 3.534 3.534

0 3.534 0 3.534 0 0 3.534 3.534

4 0 4 3.534 0 3.534 3.534 3.534
1*10

0 0 0 3.534 0 3.534 3.534 3.534

3.534 3.534 3.534 3.534 3.534 3.534 3.534 3.534

3.534 3.534 3.534 3.534 3.534 3.534

k

    

   

   


  

     

     3.534 3.534

 
 
 
 
 
 
 
 

 

 

  5

7.534 3.534 4 0 3.534 3.534

3.534 3.534 0 0 3.534 3.534

4 0 7.534 3.534 3.534 3.534
1*10

0 0 3.534 3.534 3.534 3.534

3.534 3.534 3.534 3.534 7.068 0

3.534 3.534 3.534 3.534 0 7.068

k

   
 

 
 
   

  
  

   
 
   

 

W.k.t, General finite element equations is, 

  {F} = [k] {u} 

  [k] {u} = {F}  

1

2

35

4

5

6

7.534 3.534 4 0 3.534 3.534

3.534 3.534 0 0 3.534 3.534

4 0 7.534 3.534 3.534 3.534
1*10

0 0 3.534 3.534 3.534 3.534

3.534 3.534 3.534 3.534 7.068 0

3.534 3.534 3.534 3.534 0 7.068

u

u

u

u

u

u

    
 

 
 
    
 

   
   

 
    

1

2

3

4

5

6

F

F

F

F

F

F

  
  
  
    
  

  
  

   
     

 

 Applying boundary conditions: 

a. Node 1 is fixed, so u1 = u2 = 0 

b. Node 2 is moving in x direction so u3 0 and  u4 = 0 

c. A point load of 250*103 N is acting in downward  direction. So, F6 = -250*103 

N 

d. Self weight is neglected. So F1 = F2 = F3 =F4 = F5 =  0 

 Substitute the above boundary conditions in the assembled matrix 
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35

5

6

07.534 3.534 4 0 3.534 3.534

03.534 3.534 0 0 3.534 3.534

4 0 7.534 3.534 3.534 3.534
1*10

00 0 3.534 3.534 3.534 3.534

3.534 3.534 3.534 3.534 7.068 0

3.534 3.534 3.534 3.534 0 7.068

u

u

u

     
 

 
 
    
 

   
   
 

     
3

0

0

0

0

0

250*10

 
  
  
  
  

  
  
  

  

 

Reducing the above matrix using gauss elimination method 


















































 

5.2

0

0

902.900

657.1910.50

469.0469.01

6

5

3

u

u

u

 

u3-0.469u5+0.469u6=0 

5.910u5+1.657u6 = 0 

9.902u6 = -2.5 

 Solving the above equation, 

  u3 = 0.3124 mm 

  u5 = 0.1562 mm 

  u6 = -0.5099 mm 

 Stress element 

   



























4

3

2

1

u

u

u

u

mlml
l

E

e

  

 For element 1 

 



























4

3

2

1

1111

1

1
1

u

u

u

u

mlml
l

E

e


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 



























0

3124.0

0

0

0101
1000

10*2 5

 

3124.0*
1000

10*2 5

  

2

1 /48.62 mmN  

For element 2; 

 



























6

5

4

3

2222

2

2
2

u

u

u

u

mlml
l

E

e


 

 





























5099.0

1562.0

0

31240.0

707.0707.0707.0707.0
107.707

10*2 5

 

)250065.0(*842.282   

2

2 /729.70 mmN  

For element 3; 

 



























6

5

2

1

3333

3

3

3

u

u

u

u

mlml
l

E

e


 

 





























5099.0

1562.0

0

0

707.0707.0707.0707.0
107.707

10*2 5
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)250065.0(*842.282   

2

3 /729.70 mmN  

Reaction force, 





































































































































6

5

4

3

2

1

6

5

4

3

2

1

5

6

5

4

3

2

1

068.70534.334.5.3534.3534.3

0068.7534.3534.3534.3534.3

534.3534.3534.3534.300

534.3534.3534.3534.704

534.3534.300534.3534.3

534.3534.304534.3534.7

10*1

F

F

F

F

F

F

u

u

u

u

u

u

R

R

R

R

R

R

 

 







































































































































5.2

0

0

0

0

0

5099.0

1562.0

0

3124.0

0

0

068.70534.334.5.3534.3534.3

0068.7534.3534.3534.3534.3

534.3534.3534.3534.300

534.3534.3534.3534.704

534.3534.300534.3534.3

534.3534.304534.3534.7

10*1 5

6

5

4

3

2

1

R

R

R

R

R

R

 

R1 = 0;  R2 = 1.249*105N;  R3 = 0;  R4 = 1.249*105 N;  R5 = 0;  R6 =0 

 

21. Consider a four bar truss as shown in fig. it is given that E=2x105 N/mm2 and Ae=625mm2 

for all elements. 

(i) Determine the element stiffness matrix for each element. 

(ii) Assemble the structural stiffness matrix K for the entire truss. 

(iii) Solve for the nodal displacement.(May/June 2008) 
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 Given: young’s modulus, E=2x105 N/mm2 

Area of each element, Ae=625mm2 

Load acting at node 3=-12000N 

Load acting node 2 =10,000 N 

 

 To find:  

(i) Determine the element stiffness matrix for each element. 

(ii) Assemble the structural stiffness matrix K for the entire truss. 

(iii) Solve sor the nodal displacement. 

Solution :consider node 1 as the orgin. 

The coordinates of various nodes are given below: 

Node 1= (0,0) 

Node 2= (1000, 0) 

Node 3= (1000,750) 

Node 4=(0, 750) 

 For element (1), length le1=   2

12

2

12 )( yyxx   

              le1=   22
)00(01000   

                                          le1=1000mm 
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Direction cosines, l1=
1

12

el

xx 
 

   l1=1 

   m1=
1

12

el

yy 
 

   m1=0 

For element (2): le1=   2

23

2

23 )( yyxx   

              le1=   22
)0750(10001000   

                                          le2=750mm 

Direction cosines, l2=
2

23

el

xx 
 

   l1=0 

   m2=
2

23

el

yy 
=

750

0750 
 

   m2=1 

For element (3): length, le3=   2

23

2

23 )( yyxx  =   22
)0750(10001000   

    le3=1250mm 

Direction cosines, l3=
3

13

el

xx 
=

1250

01000 
 

   l3=0.8 

m3=
3

13

el

yy 
=

1250

0750 
 

m3=0.6 

for element 4: length le4=   2

43

2

43 )( yyxx  =   22
)750750(01000   

    le4=1000mm 
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Direction cosines, l4=
4

43

el

xx 
=

1000

01000 
 

   l4=1 

m4=
4

43

el

yy 
=

1000

750750 
 

m4=0 

For element (1): displacement u1,u2, u3 and u4) 

Stiffness matrix [k] for a truss element is given by, 

 [k]=





























2

111

2

111

11

2

111

2

1

2

111

2

111

11

2

111

2

1

1

11

mmlmml

mllmll

mmlmml

mllmll

l

EA

e

 

  = 

   

   

























0000

0101

0000

0101

1000

102625
22

22

5xx
 

  =1.25x105























0000

0101

0000

0101

 

 [k]1=1x105























0000

025.1025.1

0000

025.1025.1

 

For element (2); displacement u3, u4 u5 and u6); 

Stiffness matrix, [k]2=





























2

222

2

222

22

2

222

2

2

2

222

2

222

22

2

222

2

2

2

22

mmlmml

mllmll

mmlmml

mllmll

l

EA

e
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  =























1010

0000

1010

0000

750

102625 5xx
 

 =1.66x105























1010

0000

1010

0000

 

 [k]2=1x105























66.1066.10

0000

66.1066.10

0000

 

For element (3): (displacement u1, u2 u5 and u6) 

Stiffness matrix, [k]3=





























2

333

2

333

33

2

333

2

3

2

333

2

333

33

2

333

2

3

3

33

mmlmml

mllmll

mmlmml

mllmll

l

EA

e

 

  =

   
   

   
    




























22

22

22

22

5

6.06.08.06.06.08.0

6.08.08.06.08.08.0

6.06.08.06.06.08.0

6.08.08.06.08.08.0

1250

102625

xx

xx

xx

xx

xx
 

 [k]3=1x105



























36.048.036.048.0

48.064.048.064.0

36.048.036.048.0

48.064.048.064.0

 

For element (4): displacement u7, u8, u5 and u6) 

Stiffness matrix, [k]4=





























2

444

2

444

44

2

444

2

4

2

444

2

444

44

2

444

2

4

4

44

mmlmml

mllmll

mmlmml

mllmll

l

EA

e
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  =

   

   

























0000

0101

0000

0101

1000

102625
22

22

5xx
 

  =1.25x105























0000

0101

0000

0101

 

 [k]4=1x105























0000

025.1025.1

0000

025.1025.1

 

Assemble the stiffness matrix[k], assemble the equation (1) (2) (3) and (4) 













































0

025.1

00036.0666.1

025.1048.0025.164.00

00666.10666.10

00000025.1

0036.048.00036.00

0048.064.0025.148.0064.025.1

1x10 =[k] 5

 

 

[k]= 1x105















































00000000

025.1025.10000

00026.248.0666.1036.048.0

025.148.089.10048.064.0

00666.10666.1000

0000025.1025.1

0036.048.00036.048.0

0048.064.0025.148.089.1

 

Symmetric matrix 
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we know that, general finite element equation is, 

 {F} =[k] {u} 

 [k] {u}={F} 

1x105















































00000000

025.1025.10000

00026.248.0666.1036.048.0

025.148.089.10048.064.0

00666.10666.1000

0000025.1025.1

0036.048.00036.048.0

0048.064.0025.148.089.1







































8

7

6

5

4

3

2

1

u

u

u

u

u

u

u

u





































8

7

6

5

4

3

2

1

F

F

F

F

F

F

F

F

 

Applying boundary conditions conditions: refer fig:  

1. Node 1 is fixed. So, u1=u2=0 

2. Node 4 is fixed. So, u7=u8=0 

3. Node 2 is moving in x direction. So u3 0 and u4=0 

4. At node 3, point load of 12,000N is acting in downward direction. So, 

F6=-12,000N. 

5. At node 2, point load of 10,000 N is acting x direction. So, F3=10,000N. 

6. Self-weight is neglected. So, F1=F2=F3=F4=F5=F6=F7=F8=0 

Substitute boundary condition values in equation, u1 = u2 = u4 = u7 = u8 = 0 

The final reduced equation is 




















































12000

0

10000

6

5

3

026.248.00

48.089.10

0025.1

10*1 5

u

u

u

 

 Reduce the above matrix using gauss elimination method, 

  



















































12000

0

8000

6

5

3

9041.100

48.089.10

0025.1

10*1 5

u

u

u

 

  1*105(1.9041 u6) = -12000 

  1*105(1.89u5 + 0.48u6) = 0 
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  1*105(1.25u3) = 8000 

  u3 = 0.08mm; u5 = 0.016 mm; u6 = -0.063 mm 

22. For the plane truss shown in fig. determine the horizontal and vertical displacement of 

nodal and the stresses in each element, all element have E=201Gpa and A=4x10-4m2. 

 
Given: 

 Young’s modulus E = 201 Gpa = 201*109 N/m2 

 Area of each element, A = 4*10-4m2 

 Load acting, l = -20*103 N 

 Load acting, 2 = -10*103N 

 
To find: 

i. Nodal displacements, u1, u2, u3, u4, u5, u6, u7 and u8 

ii. Stress in each element, σ1, σ2 and σ3. 

Solution:  consider node 1 as the origin. 

The co – ordinates of various nodes are given below 
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  Node 1 = (x1, y1) = (0, 0) 

  Node 2 = (x2, y2) = (0, 3) 

  Node 4 = (x4, y4) = (3, 0) 

  Node 3 = (x3, y3) = (3*cos 450, 3* sin 450) = (2.121m, 2.121m) 

For element (1), length le1=   2

12

2

12 )( yyxx   

              le1=   22
)03(00   

                                          le1=3m 

Direction cosines, l1=
1

12

el

xx 
 

   l1=0 

   m1=
1

12

el

yy 
 

   m1=3 

For element (2): le2=   2

13

2

13 )( yyxx   

              le2=   22
)0121.2(0121.2   

                                          le2=3m 

Direction cosines, l2=
2

13

el

xx 
 

   l1=0.707 

   m2=
2

13

el

yy 
=

3

0121.2 
 

   m2=0.707 

For element (3): length, le3=   2

14

2

14 )( yyxx  =   22
)00(03   

    le3=3m 
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Direction cosines, l3=
3

14

el

xx 
=

3

03
 

   l3=1 

m3=
3

14

el

yy 
=

3

00 
 

m3=0 

For element (1): displacement u1,u2, u3 and u4) 

Stiffness matrix [k] for a truss element is given by, 

 [k]=





























2

111

2

111

11

2

111

2

1

2

111

2

111

11

2

111

2

1

1

11

mmlmml

mllmll

mmlmml

mllmll

l

EA

e

 

  = 























1010

0000

1010

0000

3

10*201*10*4 94

 

  =268x105























1010

0000

1010

0000

 

For element (2); displacement u1, u2 u5 and u6); 

Stiffness matrix, [k]2=





























2

222

2

222

22

2

222

2

2

2

222

2

222

22

2

222

2

2

2

22

mmlmml

mllmll

mmlmml

mllmll

l

EA

e

 
































22

22

22

22

94

707.0707.0*707.0707.0707.0*707.0

707.0*707.0707.0707.0*707.0707.0

707.0707.0*707.0707.0707.0*707.0

707.0*707.0707.0707.0*707.0707.0

3

10*201*10*4
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 [k]2=268x105



























499.0499.0499.0499.0

499.0499.0499.0499.0

499.0499.0499.0499.0

499.0499.0499.0499.0

 

For element (3): (displacement u1, u2 u7 and u8) 

Stiffness matrix, [k]3=





























2

333

2

333

33

2

333

2

3

2

333

2

333

33

2

333

2

3

3

33

mmlmml

mllmll

mmlmml

mllmll

l

EA

e

 

  =

























0000

0101

0000

0101

3

10*201*10*4 94

 

 [k]3=268x105























0000

0101

0000

0101

 

Assembling the above matrix 

 















































00000000

01000001

00499.0499.000499.0499.0

00499.0499.000499.0499.0

00001010

00000000

00499.0499.010499.1499.0

01499.0499.000499.0499.1

10*268 5k  

General finite element equation, 
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 

























































































































8

7

6

5

4

3

2

1

8

7

6

5

4

3

2

1

5

00000000

01000001

00499.0499.000499.0499.0

00499.0499.000499.0499.0

00001010

00000000

00499.0499.010499.1499.0

01499.0499.000499.0499.1

10*268

F

F

F

F

F

F

F

F

u

u

u

u

u

u

u

u

k  

 Applying boundary conditions 

 Node 2 is fixed, so u3 =u4 = 0 

 Node 3 is fixed, u5 = u6 = 0 

 Node 4 is fixed, so u7 = u = 0 

 At node 1 a point load of  20*103N is acting opposite to x direction, so F1 = -

10*103 N. 

 Self weight is neglected, so F3 = F4 = F5 = F6 = F7 = F8 = 0 

The final reduced equation is  


























2

1

2

15

499.1499.0

499.0499.1
10*268

F

F

u

u
 





























3

3

2

15

10*20

10*10

499.1499.0

499.0499.1
10*268

u

u
 

 268*105 (1.499u1+0.499u2) = -10*103 

 268*105(0.499u1 + 1.499u2) = -20*103 

u1 = -9.379*10-5 m, u2 = -4.66 * 10-4 m 

 Stress element 

   



























4

3

2

1

u

u

u

u

mlml
l

E

e

  

 For element 1 
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 
























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4

3
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1
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 


































0

0

10*66.4

10*379.9
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3
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4

5
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26

1 /10*22.31 mN  

For element 2; 

 




















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


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 








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


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
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2 /10*52.26 mN  

For element 3; 

 










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 
























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3 /10*28.6 mN  

 HEAT TRANSFER 

23. Derive the stiffness matrix for one dimensional heat conduction element. (May/June 2013) 

      

 

Consider a bar element with nodes 1 and 2 as shown in Fig. T1 and T2 are the Temperatures at 

the respective nodes. Let k be the thermal conductivity of the material. 

Let l be the length of the bar eleemnt 

 
Stiffness matrix 

W.K.T, stiffness matrix [k] = 

v

T dvBDB ]][[][

 

In 1’D bar element,  

 Temperature function, T = N1T1 + N2T2 

Where, l

x

l

x
N 


 21 N ;

1

 

W.K.T Strain displacement, 

 





















ll

dx

dN

dx

dN
B

11
      

21

 
 

 





































l

l

dx

dN
dx

dN

B
T

1

1

      

2

1
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In one dimensional problems, [D] = k= Thermal conductivity of the material. 

Substitute ]][[][ BDB T value stiffness matrix 

Stiffness matrix for heat conduction, 

 

 

 

   

   

 

      

11

11

11

11

11

11

 
11

11

Adxdv                  
11

11

11
**

1

1

22

22

0

22

22

1

0
22

22

1

0
22

22

1

0










































































































































l

Ak
k

l

ll

llkAk

x

ll

llkAk

dx

ll

llkAk

kAdx

ll

llk

dv
ll

k

l

lk

c

l

c



 

Where, 

A= Area of the element, m2 

k= thermal conductivity of the element, W/mK, 

l= length of the element, m 

Nodal force vector due to increase in temperature in the member is given by, 

Heat transfer {F} =EAα T 








1

1
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24. Derive the equation for one dimensional heat transfer element based on the stationary of a 

functional. 

Consider a bar element with nodes 1 and 2 as shown in fig. T1 and T2 are the temperatures at the 

respective nodes, so T1 and T2 are considered as degrees of freedom of this bar element. 

We know that,           T(x)= N1T1+N2T2

 

 

T (x)= (1- ) T1+  T2 

hereN1=1-x/l; N2=x/l 

The strain energy stored within the element is given by,  

           U=  ( )2 dx 

Potential energy of external force is given by 

 H= 0T dx+Q1T1+Q2 T2 

The total potential energy,  

π=U-H 

 

Differentiating the eqn T(x), 

 

 

Substitute  the equation  

           , π=  [  (T2- T1)]
2 dx- 0 T dx – QT1-QT2. 

Integrating the above eqn 

  π = k/2l[T2
2 + T1

2 – 2T1T2] – [q0Tl] – QT1 – QT2 

 { } = { }+{ } 

 [kc] {T}={F}. 

 

21 1

1 1 2 2

0 0

1

2

dT
k dx qTdx QT Q T

dx

 
    

 
 

1 2

1 1dT
T T

dx l l
  

2 1

1
( )

dT
T T

dx l
 
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 HEAT TRANSFER PROBLEM 

25. Consider a 1mm diameter, 50 mm long aluminum pin-fin  as shown fig. used to 

enhance the heat transfer from a surface wall maintained at 300˚C. the governing 

differential equation and the boundary conditions are given by  

k
𝒅𝟐𝑻

𝒅𝒙𝟐
=

𝒑 𝒉

𝑨
 (T-T∞) 

T (0) =Tw=300˚C 

𝒅𝟐𝑻

𝒅𝒙𝟐
L=0 (insulated tip) 

Where, k=thermal conductivity, p= perimeter, A= cross-sectional area, h= 

convective heat transfer coefficient, Tw=wall temperature, T∞=ambient 

temperature.Let, k=200W/m˚C for aluminum, h=20 W/m2˚C, T∞=30˚C.esmate the 

temperature distribution in the fin using the galerkin weighted residual method. 

 

Given: 

               Diameter, d=1mm=1x10-3 

Length , l= 50mm= 50x10-3m 

          Wall temperature, Tw=300˚C 

Governing different equation, K
𝑑2𝑇

𝑑𝑥2
=

𝑝 ℎ

𝐴
(T-T∞) 

T(0)=Tw=300˚C 
𝑑𝑇

𝑑𝑥
(L)=0 

 Thermal conductivity, k=200w/m˚C. 

Heat transfer co-efficient h = 20 W/m20C 

Ambient temperature, T∞ = 300C 

To find:Temperature distribution using Galerkin’s method. 

Solution: 

       Assume a trail solution. Let. 

T(x)=a0+a1x+a2x2 

The boundary conditions are, T(0)=Tw=300˚C 
𝑑𝑇

𝑑𝑥
(L)=0 
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              From equation (a), x=0, T=300˚C 

           Applying these values in equation (1), 

300=a0 

a0=300 

           From equation (b), x=L, 
𝑑𝑇

𝑑𝑥
=0 

             Differential equation (1), 
𝑑𝑇

𝑑𝑥
=a1+a2.2x  -------------2 

                                                     0=a1+a2(2L) 

a1 = -2La2 

          Substitute a0 and a1 values in equation (1) 

T(x)=a0+a1x+a2x2 

T(x) = 300 + (-2a2L)x+a2x2 

T(x) = 300 + a2(x2-2Lx)------- 3 

w.k.t, kd2T/dx2 = Ph/A (T - T∞) 

200 d2T/dx2 = π(1*10-3)*20/(π/4)(1*10-3)2  (T – 30)            [here p=πD] 

d2T/dx2 = 400 (T – 30) - - - - - 4 

substitute T value from eqn 3 

d2T/dx2 = 400 (300 + a2(x2-2Lx)-30) 

=400[270+a2(x2-2Lx)] - - - 5 

From eqn 2, dT/dx = a1+a2(2x) 

d2T/dx2 = 2a2 -- - - -- 6 

substitute d2T/dx2value in equation 5 
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2a2= 400[270+a2(x2-2Lx)] 

2a2- 400[270+a2(x2-2Lx)] = 0 

             Take residual, R=2a2-400[270+a2(x2
-2Lx) 

 W(x) = x2-2Lx 
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Galerkin solution, T(x)=300+38572.80(x2-2Lx) 
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FOURTH ORDER BEAM EQUATION 

BEAM ELEMENT AND EQUATIONS: 

26. Derive the shape function for beam element. 

Consider the beam element of length L with axial local co-ordinate x and transverse local 

co-ordinate y. the local transverse nodal displacements are given by d1y and d2y. the rotations are 

given by  1 and  2. The local nodal forces are given by F1y and F2y. the bending moments are 

given by m1 and m2. 

 

Sign conversion for all nodes 

i. Moments are positive in the counterclockwise direction. 

ii. Rotations are positive in the counterclockwise direction. 

iii. Forces are positive in the positive y direction. 

iv. Displacements are positive in the positive y direction. 

v.  

Assume transverse displacement variation through the element length to be 

 v(x) = a1x
3 +a2x

2 + a3x + a4 

we express v in terms of the nodal degrees of freedom d1y, d2y,  1 and  2 as follows: 

At x = 0, 

v(0) = a4 = d1y 
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13

32

2

1

)0(

23
)(





a
dx

dv

axaxa
dx

xdv

 

When, x = L, 

v(L) = a1L
3 +a2L

2 + a3L + a4 = d2y 

232

2

1

32

2

1

23
)0(

23
)(





aLaLa
dx

dv

axaxa
dx

xdv

 

Where,  =
dx

dv
 

Finding a1 and a2 in terms of d1y, d2y, 


1 and  2 by using the above equation. 

a1L
3 +a2L

2 + a3L + a4 = d2y 

a1L
3 +a2L

2 + a3L + d1y = d2y 

(d2y - d1y) = a1L
3 +a2L

2 + a3L 

(d2y - d1y) = a1L
3 +a2L

2 + 1 L 

(d2y - d1y) - 1 L = a1L
3 +a2L

2 

L

1
( d2y - d1y - 1 L)= a1L

2 +a2L - - - - - 1 

232

2

1 23  aLaLa  

212

2

1  23   LaLa  

122

2

1  23   LaLa  - - - - - - - - - - 2 

Solving the equation 1 and 2 

   

   2122131

212122

12

2
13












L
dd

L
a

L
dd

L
a

yy

yy

 

Substitute a1, a2, a3 and a4 value in the equation v(x) = a1x
3 +a2x

2 + a3x + a4 

 

v(x) =    212213

12
 

L
dd

L
yy x3 +    21212

2
13

 


L
dd

L
yy x2 + 1 x + d1y 
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Convert the above equation into matrix form, 

v(x) = [N] {d} 

v(x) = [N1 N2 N3 N4] 

























2

2

1

1





y

y

d

d

 

v(x) = N1d1y + N2 1 +N3d2y+N4 2  

Where N1, N2, N3 and N4 are shape function for beam element. 

 

 

 

 223

34

23

33

3223

32

323

31

1

32
1

2
1

32
1

LxLx
L

N

Lxx
L

N

xLLxLx
L

N

LLxx
L

N









 

 

27. Derive the stiffness matrix [k] for beam element. 

The stiffness matrix for beam element is derived using equilibrium approach and beam theory 

sign conversions. 

We know that  

Transverse displacement 

        yyyyy dxx
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We know that  

 Nodal force, F1y = EI
3

3 )0(

dx

vd
 

 F1y =  21213
661212
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 LLdd yy   
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 Bending moment, m1 = -EI
2

2 )0(
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 Nodal force, F2y = -EI
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 Bending moment, m2 = EI
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 Arranging to the above equation (F1y, m1, F2y, m2) in matrix form 
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Finite element equation for a beam element 

Stiffness matrix,  


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28. A fixed beam of length 2l m carries a uniformly distributed load of w(N/m) which run over 

a length L m from the fixed end shown in fig.  

(i) Calculate the rotation at point B. 

 
 

Given: 
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Young’s modulus, E  

 Moment of inertia, I  

 Element 1, length L1 = L 

` element 2, length L2 = L 

To find 

i. Slope or rotation at B,  2 

Solution: 

 We can divide the beam into two element 

 For element 1: node 1, 2, 3 and 4; d1y,  1, d2y,  2) 

 Finite element equation is 
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For uniformly distributed load 

F1y = -WL/2,  m1 = -WL2/12, F2y = -WL/2, m2 = WL2/12 
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 For element 2: node 3,4,5 and 6; d2y,  2, d3y,  3) 

 Finite element equation is 
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For uniformly distributed load, 

F2y = 0, m2 = 0, F3y = 0, m3 = 0 
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assemble the finite element 
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Applying boundary condition; 

 A is fixed, displacement d1y and rotation  1 are 0 

 At B, vertical displacement, d2y = 0 

 At C, vertical displacement, d3y = 0 

Substitute the boundary condition in the global stiffness matrix, 
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Neglecting the first, second, third, fifth and sixth  row and column from the above equation, 
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Slope or rotation,  2 = 
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29. For the beam and loading down in fig. calculate the rotations B and C. E=210Gpa, 

I=6x106mm4. 

 
Given: 
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Young’s modulus, E = 210 GPa = 210 * 109 N/m2 

 Moment of inertia, I = 6 *106 mm4 = 6 * 10-6 mm4 

 Element 1, length L1 = 1 m 

` element 2, length L2 = 1 m 

 Uniformly distribute load, W = 12 KN/m = 12*103 N/m 

To find 

i. Slope or rotation at B,  2 

ii. Slope or rotation at C,  3 

Solution: 

 We can divide the beam into two element 

 For element 1: node 1, 2, 3 and 4; d1y,  1, d2y,  2) 

 Finite element equation is 
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There is no load and moment in element 1. 

F1y = 0,  m1 = 0, F2y = 0, m2 = 0 
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 For element 2: node 3,4,5 and 6; d2y,  2, d3y,  3) 

 Finite element equation is 
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For uniformly distributed load, 

 F2y = -WL/2 = -12*103*1/2 = -6000 N 

 F3y = -WL/2 = -12*103*1/2 = -6000 N 

 m2 = -WL2/12 = -12*103*12/12 = -1000 N-m 

 m3 = WL2/12 = 12*103*12/12 = 1000 N-m 
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assemble the finite element 
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Applying boundary condition; 

 A is fixed, displacement d1y and rotation  1 are 0 

 At B, vertical displacement, d2y = 0 

 At C, vertical displacement, d3y = 0 

Substitute the boundary condition in the global stiffness matrix, 
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Neglecting the first, second, third and fifth row and column from the above equation, 
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 1.26 * 106 [8 2 + 2 3] = -1000 

 1.26 * 106 [2 2 + 4 3] = 1000 

Solving the above equation 

  2 = -1.70 * 10-4 rad 

  3 = 2.834 * 10-4 rad 

 

30. Find the deflection at the point load and slope at the ends for the steel shaft which simply 

supported  at the bearing and B as shown in fig. take E=200Gpa. 

 
 

Given: 

 Young’s modulus, E = 200 GPA = 2*105 N/mm2 

Moment of inertia for element 1 & 2, I1 = 1.25*105 mm4 

   Element 3, I2 = 4*105 mm4 

 
Element 1, length L1 = 150 mm 

Element 2, length L2 = 75 mm 

Element 3, length L3 = 125 mm 

Point load at node 2, F2 = 3000N 
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To find: 

i. Deflection at the point load 

ii. Slope at the ends 

Solution: 

 We can divide the beam into three elements. 

 
 For element 1: node 1, 2, 3 and 4; d1y,  1, d2y,  2) 

 
 

Finite element equation is 
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There is no load and moment in element 1. 

F1y = F1y, m1 = 0, F2y = -3000N, m2 = 0 
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 For element 2: node 3,4,5 and 6; d2y,  2, d3y,  3) 

 Finite element equation is 
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There is no load and moment in element 1. 

F2y = 0, m2 = 0, F3y = 0, m3 = 0 
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 For element 3: node 5, 6, 7 and 8; d3y,  3, d4y,  4) 

 Finite element equation is 
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There is no load and moment in element 1. 

F3y = 0, m3 = 0, F4y = F4y, m4 = 0 
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Assembling the finite element equation 
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Applying boundary conditions: 

  d1y= 0,   1 =  1, d2y = d2y,   2 =  2 

  d3y = d3y,   3 =  3, d4y = 0,   4 =  4 

 since d1y = 0, d4y = 0, neglect the first and seventh row and column in the global stiffness matrix. 
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Convert the above matrix into equation, 

 104[66600  1-666 d2y + 33300  2] = 0 

104[-666 1+80.04d2y + 2002.5 2 – 71.16 d3y + 2668.5  3] = -3000 

104[ 33300 1 + 2002.5 d2y + 200025  2 – 2668.5 d3y + 66712.5  3] = 0 

104[ -71.16 d2y – 2668.5  2 + 76.08 d3y – 2361  3 + 307.5  4] = 0 

104[ 2668.5 d2y + 66712.5  2 – 2361 d3y + 159050  3 + 12812.5  4] = 0 

104[ 307.5 d3y + 12812.5  3 + 25625  4] = 0 

Solving the above equation, 

  1 = -0.0011 rad 

  4 = 0.0010 rad 

 d2y = -0.112 mm 

TRANSVERSE DEFLECTION OF BEAM 

31. Explain About The Transverse Deflection Of Beam 
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Fixed-Fixed beam : Deflections and slope at 

both ends are zero which constitute geometric 

boundary conditions 

 

 

 

                Free-free beam Bending moment and 

shear forces are zero at both ends (natural 

boundary conditions at both ends) 

 

 

 

                   Simply supported beam                 

                  (mixed boundary conditions) 

 

 Natural boundary condition also known as additional or dynamic boundary 

condition, which results from the balance of moments or forces in the boundary. For example in case of a free-

free beam which may be a model of a flying aeroplane or a spacecraft, at both the ends in this system shear force 

and bending moments are zero. Hence they constitute the natural boundary conditions. 

Lateral vibration of a flexible taut string 

 

              T      T 

  

 

  

               L                

 

 

 

 

 

    

dx
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Strings are mostly used in musical instruments and many other applications of domestic and industrial in nature. 

A string of length L is shown in Figure, which is subjected to tension T.  Let at time t = 0, the string is pulled in 

the lateral direction (y direction) as shown in figure and left. Hence the lateral deflection u along the string is a 

function of the space variable x and time t i.e., ( , )u u x t  

 

If the lateral deflection is small, the change in tension T due to the deflection is negligible. Figure 10.4(c) shows 

the free body diagram of an elemental length dx  of the string. When the string is vibrating, in the y direction 

inertia force is acting. Considering the forces in the vertical direction, applying Newton’s second law one may 

have  

2

2
sin sin

u
mdx T dx T

t x

  
    

    

Here m is the mass per unit length of the string. Now assuring small deflections u and slope , the equation  

reduces to following equation. 




 TdxT
t

u
mdx 

















.

x2

2

 

Now substituting the slope 

u

x


 

  in equation one may write  

2 2

2 2

u u
mdx T dx

t x

 


    

or,        

2 2

2 2

u u
m T

t x

 


   

 

or,    

2 2

2 2

u T u

t m x

 


   

or, 

2 2
2

2 2

u u T
c   where, c

t x m

 
 

    

The above equation is known as Wave equation. One may use Hamilton’s principle to derive the equation of 

motion of this system also.       
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32. Discuss about the Longitudinal Vibration. 

LONGITUDINAL VIBRATION: 

Consider a rod of length l (Fig.) subjected to a force F at time t=0 and then released. It will be subjected to 

longitudinal vibration.   

 

Longitudinal vibration of  rod 

Let u(x,t) be the axial displacement of an element dx of the rod. 

From Hook’s law   x

u
E

A

P






      (1) 

Applying Newton’s second law  

pdx
x

p
p

t

u
dm 

















2

2

        (2) 

2

2
Adx

u u
EA dx

t x x

   
   

        (3) 

P= force at x 

A= Cross sectional area 

E= Young’s Modulus. 

d
dm Adx 

 is the mass of  the element dx  


= Mass per unit volume. 

 From equation (3) If AE is const 

2
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or
2

2
2

2

2

x

u
c

t

u










   where    

E
c 


 

It may be observed that we are getting the same wave equation in this case where only c is different. It can be 

shown that c represent the velocity of the wave in the rod. 

33. Discuss about the various mode shapes exerted by the beam while vibration. 

MODE SHAPES: 
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34. Write short notes on the natural frequency of beam. 

NATURAL FREQUENCY: 

The natural frequency can be calculated using the formula 
n

k

m
 

 where m is the attached 

mass. In this calculation we have neglected the mass of the beam.  

Hence it may be observed that by considering a point mass at the tip we obtained one natural 

frequency of the system. Instead of modeling this system as a single-spring mass if one consider the 

beam to be consist of several masses, then the system can be modeled as a multi-degree of freedom 

system as shown in figure .  

But as the dimension of each elemental mass considered in the above case is arbitrary, one may 

consider the beam as a continuous system with infinity number of distributed mass and stiffness and 

hence has infinity number of natural frequencies.    

 

 

 

 

 

 

 

 So in contrast to the discrete mass system, in distributed mass or continuous system the system 

has infinite number of natural frequencies and corresponding to each natural frequency, the 

system will have a distinct mode shape. 

 It may be observed that the response of the continuous system depends time and space 

coordinate (location). But in case of discrete system the response is only a function of time. 

Hence while the equation of motion of discrete systems are written in terms of ordinary 

differential equations, in case of continuous system they are written in terms of partial 

differential equations.  

 It may be noted that all the real systems are continuous system. 

 

[m]= 𝜌Al/6[
2 1
1 2

] 

 

 

 

 

 

 

Two Marks Question and Answers. 
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UNIT-II 

1. What are the methods are generally associated with the finite element analysis? 

 Force method 

 Displacement or stiffness method. 

 

2. Explain stiffness method. 

Displacement or stiffness method, displacement of the nodes is considered as the unknown of the 

problem. Among them two approaches, displacement method is desirable. 

 

3. Explain Force Method? 

 In force Method, internal forces are considered as the unknowns of the problem 

 

4. What is meant by discretization? 

The art of subdividing a structure in to convenient number of smaller components is known as 

discretization. These smaller components are then put together. The process of uniting the various 

elements together is called assemblage. 

5. What is meant by Assemblage? 

These smaller components are then put together. The process of uniting the various elements together is 

called assemblage. 
 

6. What is truss element? (Nov2012) 

The truss elements are the part of a truss structure linked together by point joint which transmits only 
axial force to the element. 

 

7. During discretization, mention the places where it is necessary to place a node? 

 Concentrated load acting point 

 Cross-section changing point 

 Different material interjections point 

 Sudden change in point load 

 

8. What is the difference between static and dynamic analysis? 

Static analysis: The solution of the problem does not vary with time is known as static analysis 

Example: stress analysis on a beam 
 

Dynamic analysis: The solution of the problem varies with time is known as dynamic analysis 

Example: vibration analysis problem. 
 

9. What are the types of loading acting on the structure? 

 Body force (f) 

 Traction force (T) 

 Point load (P) 

 

10. Define the body force 
A body force is distributed force acting on every elemental volume of the body 

Unit: Force per unit volume. 

Example: Self weight due to gravity 

 

11. Define traction force 

Traction force is defined as distributed force acting on the surface of the body. 
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Unit: Force per unit area. 
Example: Frictional resistance, viscous drag, surface shear 

 

12. What is point load? 

Point load is force acting at a particular point which causes displacement. 
 

13. Write down the general finite element equation. 

 
K-Stiffness matrix in N/mm 

U-Nodal displacement in mm 

 

14. What do you mean by constitutive law? 

 For a finite Element, the stress-strain relations are expressed as follows: 

 

{σ}= {D}{e} 
 

{σ}= Stress in N/m2 

{D}=Stress-Strain relationship matrix 
{e}=Strain (No Unit) 

15. What is interpolation functions? (May 2012) 

 
The function used to represent the behavior of the field variable with in an element are called 

interpolation functions. 

 

16. What are the methods are generally associated with the finite element analysis? 

17. Force method 

18. Displacement or stiffness method. 

19. Explain stiffness method. 

Displacement or stiffness method, displacement of the nodes is considered as the unknown of the 

problem. Among them two approaches, displacement method is desirable. 

20. Explain Force Method? 

 In force Method, internal forces are considered as the unknowns of the problem 

21. What are the classifications of coordinates? 

Global coordinates  

Local coordinates  

Natural coordinates 

22. What is Global coordinates? 

The points in the entire structure are defined using coordinates system is known as global 

coordinate system. 

23. What is natural coordinates? 

A natural coordinate system is used to define any point inside the element by a set of 

dimensionless number whose magnitude  never exceeds  unity. This system is very useful in 

assembling of stiffness matrices. 
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24. Define shape function. 

Approximate relation φ (x,y) = N1 (x,y) φ1 + N2 (x,y) φ2 + N3 (x,y) φ3 

Where φ1, φ2, and φ3 are the values of the field variable at the nodes N1, N2, and N3 are the 

interpolation functions. 

N1, N2, and N3 are also called shape functions because they are used to express the geometry or shape 

of the element. 

25. Distinguish between 1D bar element and 1D beam element (Nov 2009) 

 1-D bar element bar element has axial deformation {u} and the element stiffness matrix is 2*2 

 1-D beam Element has transverse deformation and rotation and the element stiffness matrix is 

4*4 

26. What are the characteristic of shape function? 

It has unit value at one nodal point and zero value at other nodal points. The sum of shape function is 

equal to one. 

27. Why polynomials are generally used as shape function? 

Differentiation and integration of polynomial are quite easy. 

The accuracy of the result can be improved by increasing the order of the polynomial. It is easy to 

formulate and computerize the finite element equations. 

28. How do you calculate the size of the global stiffness matrix? 

Global stiffness matrix size=Number of nodes X Degrees of freedom per node 

29. Write down the expression of stiffness matrix for one dimensional bar element 

  [k]=AE (1 -1) 

l   (-1 1) 

 

 

 

30. State the properties of stiffness matrix 

 It is asymmetric matrix 

 The sum of elements in any column must be equal to zero. 

 It is an unstable element. So the determinant is equal to zero. 

31. Write down the expression of shape function N and displacement   u for one dimensional bar 

element. 

U=N1u1+N2u2 

 

N1=1-X/l 
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N2=X/l 

 

32. Define total potential energy. 

Total potential energy, π=Strain energy (U)+ potential energy of the external forces (W) 

33. State the principle of minimum potential energy. 

Among all the displacement equations that satisfied  internal compatibility and the boundary 

condition those that also satisfy the equation of  equilibrium make the potential energy a minimum is a 

stable system. 

34. Write down the finite element equation for one dimensional two noded bar element. 

    [F]= [K] {u} 

 F- Force in N 

 K- Stiffness Matrix in N/mm 

 u- Displacement in mm 

35. What is truss? 

A truss is defined as a structure made up of several bars, riveted or welded together. 

36. Statetheassumptionaremadewhilefindingtheforcesinatruss 

Allthemembersarepinjointed. Thetrussisloadedonlyatthejoint 

Theself-weightofthemembersisneglectedunlessstated. 

37. Statetheprinciplesofvirtualenergy? 

Abodyisinequilibriumiftheinternalvirtualworkequalstheexternalvirtualwork 

fortheeverykinematicallyadmissibledisplacementfield. 

38. Whatisessentialboundarycondition 

Primary boundary condition orEBC Boundary condition which interms offield 

variableisknownasPrimaryboundarycondition. 

39. State Naturalboundaryconditions 

Secondaryboundarynaturalboundaryconditionswhichareinthe differentialform 

offieldvariableisknownassecondaryboundarycondition 

40. State the assumptions made while finding the forces in a truss (Nov 2011) 

 All the members are pin jointed 

 The truss is loaded only at the joints 

 The self-weights of the members are neglected unless stated 

41. Whendo we resort to 1D quadratic spar (bar) elements? (May 2011) 
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 Better Accuracy 

 Representation of curved boundaries 

 Faster Convergence 

42. Whatismeantbydegreesoffreedom? 

Whentheforceor reactionactatnodalpointnodeis subjectedtodeformation.The deformation 

includesdisplacement rotation, andorstrains. These arecollectively knownasdegreesoffreedom. 

43. Statetheprinciplesofvirtualenergy? 

Abodyisinequilibriumiftheinternalvirtualworkequalstheexternalvirtualwork 

fortheeverykinematicallyadmissibledisplacementfield. 

44. Whatishomogeneousform? 

Whenthespecifiedvaluesofdependentvariablesiszero,theboundaryconditionare saidtobehomogeneous 

45. Whatisnon-homogeneousform? 

Whenthespecifiedvaluesofdependentvariablesarenon-zero,theboundaryconditisaidtobenon-

homogeneous. 

46. Define frequency of vibration. 

It is the number of cycles described in one second. Unit is HZ 

47. Define damping ratio. 

It is define as the ratio of actual damping coefficient (c) to the critical damping coefficient (cc) 

  Damping ratio ɛ = 
𝑐

𝑐𝑐
   =    

𝑐

2𝑚𝜔𝑛
0 

48. What is meant by longitudinal vibration? 

When the particles of the shaft or disc moves parallel to the axis of the shaft, then the vibrations are 

known as longitudinal vibration. 

49. What is meant by transverse vibration? 

When the particles of the shaft or disc moves approximately perpendicular to the axis of the shaft, then 

the vibrations are known as transverse vibration. 

50. Define magnification factor. 

The ratio of the maximum displacement of the forced vibration (xmax) to the static deflection under the 

static force (x0) is known as magnification factor. 

51. Write down the expression of longitudinal vibration of bar element. 

Free vibration equation for axial vibration of bar element is  

   [𝐾]{𝑢}  =  𝜔2[𝑚]{𝑢} 

  Where,    u  - displacement  

   [𝐾]–  stiffness matrix 

[𝐾] − 
𝐴𝐸

𝐿
[

1 −1
−1 1

] 

   𝜔 – natural frequency  

    [𝑚] – mass matrix 

   Lamped [𝑚] =  
𝜌𝐴𝑙

2
[
1 0
0 1

] 
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            Consistent [𝑚] =  
𝜌𝐴𝐿

2
[
2 1
1 2

] 

52. Write down the expression of governing equation for free axial vibration of rod. 

The governing equation for free axial vibration of rod is given by, 

   𝐴𝐸 
𝜕2𝑢

𝜕𝑥2   =  𝜌𝐴  
𝜕2𝑢

𝜕𝑡2  

                                     Where,   E – Young’s modulus, 

               A – cross section area 

   𝜌 – density 

53. Write down the expression of governing equation for transverse vibration of beam 

The governing equation for free transverse vibration of a beam is  

   𝐸𝐼 
𝜕4𝑣

𝜕𝑥4 +  𝜌𝐴
𝜕2𝑣

𝜕𝑡2 = 0 

  Where, E –Young’s modulus 

   I –moment of inertia 

   𝜌 –density 

                                        A –cross sectional area 

54. Write down the expression of transverse vibration of beam element. 

Free vibration equation for transverse vibration of beam element is, 

   [𝐾]{𝑢}  =  𝜔2[𝑚]{𝑢} 

                  Where,           [𝐾] = stiffness matrix for beam element 

 [𝐾] =  
𝐸𝐼

𝐿3
[

12 6𝐿
6𝐿 4𝐿2

−12 6𝐿
−6𝐿 2𝐿2

−12 −6𝐿
6𝐿 2𝐿2

12 −6𝐿
−6𝐿 4𝐿2

] 

 [𝑚] = mass matrix 

[𝑚] =
𝜌𝐴𝐿

420
[

156 22𝐿
22𝐿 4𝐿2

54 −13𝐿
13𝐿 −3𝐿2

54 13𝐿
−13𝐿 −3𝐿2

156 −22𝐿
−22𝐿 4𝐿2

]  𝑓𝑜𝑟 𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑡 𝑚𝑎𝑠𝑠 𝑚𝑎𝑡𝑟𝑖𝑥 

[𝑚] =
𝜌𝐴𝐿

2
[

1 0
0 0

0 0
0 0

0 0
0 0

1 0
0 0

]  𝑓𝑜𝑟 𝑙𝑢𝑚𝑝𝑒𝑑 𝑚𝑎𝑠𝑠 𝑚𝑎𝑡𝑟𝑖𝑥 
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  St.Anne’s College of Engineering & Technology,  

Department of Mechanical Engineering 

  Subject Name  : FINITE ELEMENT ANALYSIS 

  Subject code  :  ME8692 

  Year    :  IIIrd year 

  Semester   :  VIth semester 

UNIT III 

TWO DIMENSIONAL SCALAR VARIABLE PROBLEMS 

Second Order 2D Equations involving Scalar Variable Functions – Variational formulation –Finite 

Element formulation – Triangular elements – Shape functions and element matrices and 

vectors.Application to Field Problems - Thermal problems – Torsion of Non circular shafts –

Quadrilateral elements – Higher Order Elements. 

 

1. Write short notes on second order 2D equations involving scalar variable functions 

SECOND ORDER 2D EQUATIONS INVOLVING SCALAR VARIABLE FUNCTIONS 

Two dimensional elements Two dimensional elements are defined by three or more nodes in a two 

dimensional plane (i.e., x, y plane). The basic element useful for two dimensional analysis is the 

triangular element. 

 

Many engineering structures and mechanical components are subjected to loading in two directions. 

Shafts, gears, couplings, mechanical joints, plates, bearings, are few examples. Analysis of many three 

dimensional systems reduces to two dimensional, based on whether the loading is plane stress or plane 

strain type.  

Triangular elements or Quadrilateral elements are used in the analysis of such components and systems. 

The various load vectors, displacement vectors, stress vectors and strain vectors used in the analysis are 

as written below, the displacement vector u = [u, v]T ,  

u is the displacement along x direction, v is the displacement along y direction,the body force vector f = 

[ fx , fy]T  fx , is the component of body force along x direction, fy is the component of body force along 
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y direction. The traction force vector T = [ Tx , Ty]
T Tx , is the component of body force along x 

direction, Ty is the component of body force along y direction. 

The element having mid side nodes along with corner nodes is a higher order element. 

Element having a curved side is also a higher order element. A simple quadrilateral element has straight 

edges and corner nodes. This is also a linear element. It can have constant thickness or variable 

thickness. The quadrilateral having mid side nodes along with corner nodes is a higher order element. 

Element having a curved side is also a higher order element. 

The given two dimensional componentsis divided in to number of triangular elements or quadrilateral 

elements. If the component has curved boundaries certain small region at the boundary is left uncovered 

by the elements. This leads to some error in the solution. 

 

Two dimensional stress strain equations 

From theory of elasticity for a two dimensional body subjected to general loading the equations of 

equilibrium are given by  

 
The strain displacement relations are given by 

 
 

The stress strain relationship for plane stress and plane strain conditions are given by thematrices shown 

in the next page. are usual stress straincomponents, v is the poisons ratio. E is 

young’s modulus. Please note the differences in[ D] matrix . 

Plane Stress and Plane Strain 

The 2D element is extremely important for the Plane Stress analysis and Plane Strain analysis. 

Plane Stress Analysis: 
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It is defined to be a state of stress in which the normal stress (ƒã) and shear stress (ƒä) directed 

perpendicular to the plane are assumed to be zero. 

Plane Strain Analysis: 

It is defined to be a state of strain in which the normal to the xy plane and the shear strain are assumed to 

be zero. 

VARIATIONAL FORMULATION 

Variational formulation refers to the construction of a functional or a variational principle that is 

equivalent to the governing equations of the problem. It is nothing but the formation I which the 

governing equations are translated into equivalent weighted integral statements that are not necessarily 

equivalent to a variational principle. 

It is common, especially in structural mechanics to express finite element formulation in vector notation 

(i.e., in terms of matrices). 

We know that, 

B(w,u) = l(w) 

Let, 

C = 

















00

2221

1211

00

0

0

a

aa

aa

     D = 





















1

/

/

y

x

 

B and l are expressed as, 

B (w,u) = ∫





















w

yw

xw

/

/
T

















00

2221

1211

00

0

0

a

aa

aa





















u

yu

xu

/

/

dx dy 

It is,B (w,u) = ∫(𝐷𝑊)TCD u dx dy 

l(w) = ∫(𝑊)Tf dx dy + ∫𝑊Tqdsis the variational formulation of a two dimensional problem. 

2. Explain the finite element formulation for 2D in detail  

FINITE ELEMENT FORMULATION 

The major steps are as follows 

1. Discretization of domain into finite elements. 

2. Weak formulation of governing differential equation. 

3. Derivation of finite element interpolation functions. 

4. Develop finite element model using weak form. 

5. Assembly of finite elements to obtain the global system of algebraic equations. 
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6. Imposition of boundary conditions. 

7. Solution of equations. 

8. Post computation of solution. 

Here, steps 6 and 7 remain unchanged from one-dimensional finite element analysis. 

The basic element useful for two dimensional analysis is the triangular element. The simple two 

dimensional elements have corner nodes. 

a) Triangular element 

b) Rectangular element 

c) Quadratic element 

d) Parallelogram element 

Triangular elements:Nodal displacements of the element represent the displacements at points inside 

an element. As discussed earlier, the finite element method uses the concept of shape function in 

systematically developing these interpolations. 

Generally triangular elements are classified into two types, they are: 

(i) Constant Strain Triangular element 

(ii) Linear strain triangular element 

Constant Strain Triangular (CST) Element 

A three noded triangular element is known as constant strain triangular (CST) element. It has six 

unknown displacement degrees of freedom (u1,v1, u2,v2, u3,v3). 

 

 

Displacement function for the CST element 

 

Linear Strain Triangular (LST) Element: 
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Linear strain triangular element is those, which has six nodes. The degrees of freedom of an LST 

element are twelve, because it has twelve unknown displacement.  

The development of stiffness matrix in LST element is same as that of the CST element. The difference 

is that more number of equations and it is a tedious process to solve those equations. Hence it is solved 

by computer by using mathematical equations. 

For plane stress applications, LST elements are preferred that the CST element. When large numbers of 

nodes are used, LST element is not preferred, since cost of formation of the element stiffness equation 

bandwidth is high compared to CST element. 

3. Derive the section with the development of the shape function for CST element for strain 

displacement matrix.(AU-NOV/DEC-2010)       

Consider a typical CST element with nodes 1,2 and3 as shown in fig. let the nodal displacement, 

 

 

1

2

3

1

2

3

,{ }

u

u

u
displacement u

v

v

v

 
 
 
  

  
 
 
 
    

Since CST element has got two degrees of freedom at each   node (u,v) the degree of freedom is 6. 

Hence it has 6 generalized coordinates. 

Let 

 

1 2 3

4 5 6

u a a x a y

v a a x a y

  

  
 

Where a1, a2, a3, a4, a5 and a6 are globalized coordinates 



UNIT-III / TWO DIMENSIONAL SCALAR VARIABLE PROBLEMS P a g e  | 6 
 

ME8692 FINITE ELEMENT ANALYSIS   
 

 

1 1 2 1 3 1

2 1 2 2 3 2

3 1 2 3 3 3

u a a x a y

u a a x a y

u a a x a y

  

  

  

 

Write above equation in matrix form 

1 1 1 1

2 2 2 2

3 3 3 3

1

1

1

u x y a

u x y a

u x y a

     
    

    
         

 

1

1 1 1 1

2 2 2 2

3 3 3 3

1

1

1

a x y u

a x y u

a x y u



     
    

    
         

 

Let 

1 1

2 2

3 3

1

1

1

1

T

x y

D x y

x y

C
D

D



 
 


 
  



 

The co-factors of matrix D is 

2 3 3 2 2 3 3 2

3 1 1 3 3 1 1 3

1 2 2 1 1 2 2 1

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

x y x y y y x x

C x y x y y y x x

x y x y y y x x

  

   

  

2 3 3 2 3 1 1 3 1 2 2 1

2 3 3 1 1 2

3 2 1 3 2 1

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

T

x y x y x y x y x y x y

C y y y y y y

x x x x x x

  

   

  
 

We know that 

1 1

2 2

3 3

2 3 3 2 1 3 2 1 3 2

1

1

1

1( ) ( ) ( )

x y

D x y

x y

D x y x y x y y y x x

 
 


 
  

     

 

Substitute CT  and D values in equation 

2 3 3 2 3 1 1 3 1 2 2 1

1

2 3 3 1 1 2

2 3 3 2 1 3 2 1 3 2

3 2 1 3 2 1

( ) ( ) ( )
1

( ) ( ) ( )
1( ) ( ) ( )

( ) ( ) ( )

x y x y x y x y x y x y

D y y y y y y
x y x y x y y y x x

x x x x x x



   
 

   
     
    

substitute D-1 value in the above equation 
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1

1 1 1 1

2 2 2 2

3 3 3 3

1

1

1

a x y u

a x y u

a x y u



     
    

    
         

 

1 2 3 3 2 3 1 1 3 1 2 2 1 1

2 2 3 3 1 1 2 2

2 3 3 2 1 3 2 1 3 2

3 3 2 1 3 2 1 3

( ) ( ) ( )
1

( ) ( ) ( )
1( ) ( ) ( )

( ) ( ) ( )

a x y x y x y x y x y x y u

a y y y y y y u
x y x y x y y y x x

a x x x x x x u

       
    

                      

 

The area of the triangle can be expressed as function of the x, y coordinates of the nodes 1, 2 and 3

1 1

2 2

3 3

1
1

1
2

1

x y

A x y

x y

 
 


 
       

2 3 3 2 1 3 2 1 3 2

2 3 3 2 1 3 2 1 3 2

1
[1( ) ( ) ( )]

2

2 ( ) ( ) ( )

A x y x y x y y y x x

A x y x y x y y y x x

     

     
 

Substitute 2A value in equation 

1 2 3 3 2 3 1 1 3 1 2 2 1 1

2 2 3 3 1 1 2 2

3 3 2 1 3 2 1 3

( ) ( ) ( )
1

( ) ( ) ( )
2

( ) ( ) ( )

a x y x y x y x y x y x y u

a y y y y y y u
A

a x x x x x x u

       
    

       
           

 

1 1 2 3 1

2 1 2 3 2

3 1 2 3 3

1 2 3 3 2

2 3 1 1 3

3 1 2 2 1

1 2 3

2 3 1

3 1 2

1 3 2

2 1 3

3 2 1

1

2

( )

( )

( )

( )

( )

( )

( )

( )

( )

a p p p u

a q q q u
A

a r r r u

p x y x y

p x y x y

p x y x y

q y y

q y y

q y y

r x x

r x x

r x x

     
    

    
         

 

 

 

 

 

 

 

 

 

 

From the equation  we know that 

1 2 3u a a x a y    

We can write this equation in matrix form 

 
1

2

3

1

a

u x y a

a

 
 

  
 
 
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Substitute 

1

2

3

a

a

a

 
 
 
 
 

value in the above equation 

 
1 2 3 1

1 2 3 2

1 2 3 3

1
1

2

p p p u

u x y q q q u
A

r r r u

   
  

   
     

 

 
1 2 3 1

1 2 3 2

1 2 3 3

1
1

2

p p p u

u x y q q q u
A

r r r u

   
  

   
     

 

 
1

1 1 1 2 2 2 3 3 3 2

3

1

2

u

u p q x r y p q x r y p q x r y u
A

u

 
 

        
 
 

 

1

3 3 31 1 1 2 2 2
2

3

2 2 2

u
p q x r yp q x r y p q x r y

u u
A A A

u

 
       

   
   

 

 

The equation in the form of   

 
1

1 2 3 2

3

u

u N N N u

u

 
 

  
 
 

 

Similarly 

 
1

1 2 3 2

3

v

v N N N v

v

 
 

  
 
 

 

Shape function 

1 1 1
1

2 2 2
2

3 3 3
3

2

2

2

p q x r y
N

A

p q x r y
N

A

p q x r y
N

A

 


 


 


 
 

Assembling the equation in matrix form 

Displacement function 
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1

1

1 2 3 2

1 2 3 2

3

3

0 0 0( , )

0 0 0( , )

u

v

N N N uu x y
u

N N N vv x y

u

v

 
 
 
     

     
     

 
 
  

 

4. Derive the Strain – Displacement matrix [B] for CST element. 

Strain – Displacement matrix [B] for CST element 

 

Displacement function 

1

1

1 2 3 2

1 2 3 2

3

3

0 0 0( , )

0 0 0( , )

u

v

N N N uu x y
u

N N N vv x y

u

v

 
 
 
     

     
     

 
 
    

u=N1u1=N2u2+N3u3 

v=N1v1=N2v2+N3v3 

The strain components for CST element are; 

















xy

y

x

e

e



Where,

 

xe and ye   --- Normal strain

 

xy --- Shear Strain 

Normal Strain, 
)N3u3+N2u2N1u1(//

/





xxu

xuex
 

Normal Strain,
)N3v3+N2v2N1v1(//

/





yyv

yvey
 

Shear strain, xy = yu  /  + xv  /  

xy  =   )/N()/N()/N( 332211 yuyuyu  +  )/N()/N()/N( 332211 xvxvxv   

On rearranging 
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

















xy

y

x

e

e

 



























xyx

yy

x

yxy

y

xx

/N/N/N

/N0/N

0/N0

/N/N/N

0/N0

/N0/N

332

32

3

211

1

21

























3

3

2

2

1

1

v

u

v

u

v

u

 

The above equation is of the form      {e} = [B] (u) 

We know that, 

1 1 1
1

2 2 2
2

3 3 3
3

2

2

2

p q x r y
N

A

p q x r y
N

A

p q x r y
N

A

 


 


 


On substituting the shape functions we get, 

 

[B] is the strain displacement matrix for the CST element.This equation is the element strain equation. 

5. Derive the stress – strain relationship matrix for two dimensional elements.  

 

Hooke’s law states that when a material is loaded within its elastic limit, the stress is directly 

proportional to the strain. 

Stress is directly proportional to strain 
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    e

=Ee

e=

'  mod

E

where

e strain

stress

E young s ulus

















 

Strain    
xe' = x

E



 

The above fig shows the stress in y direction produces a negative strain in the  x direction  as a result of 

poisson’s  effect which is given by 

 

 

x

x

-e'' =

e'' =-

'  ratio

x

x

v

E

v

E

v poisson s







 

Similarly the stress in the z direction produces a negative strain in the x direction as shown in fig 

x

x

-e''' =

e'''

z

z

v

E

v

E




 

 

By applying superposition principle to the equation we get 
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yx z
xe v v

E E E

 
  

 

The above equation is strain equation in x direction 

Similarly the strain in y and z direction are
 

yx z
ye v v

E E E

 
   

 

yx z
ze v v

E E E

 
   

 
Solving the above equation for normal stresses (σx, σy and σz). 

(1 )
(1 )(1 2 )

(1 )
(1 )(1 2 )

(1 )
(1 )(1 2 )

x x y z

y x y z

z x y z

E
e v ve ve

v v

E
ve v e ve

v v

E
ve ve v e

v v







      

      

      

 

The shear stress and shear strain relationship is given by, 

G   

The expressions for the three different sets of shear stresses are 

mod  of rigidity = 
2(1 )

xy xy

yz yz

zx zx

G

G

G

where

E
G ulus

v

 

 

 










 

2(1 )

1 2

(1 )(1 2 ) 2

2(1 )

1 2

(1 )(1 2 ) 2

2(1 )

1 2

(1 )(1 2 ) 2

xy xy

xy xy

yz yz

yz yz

zx zx

zx zx

E

v

E v

v v

E

v

E v

v v

E

v

E v

v v

 

 

 

 

 

 




 
  

   




 
  

   




 
  

     
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Assembling the above equation 

1 0 0 0

1 0 0 0

1 0 0 0

1 2
0 0 0 0 0

2(1 )(1 2 )
1 2

0 0 0 0 0
2

1 2
0 0 0 0 0

2

x x

y y

z z

xy xy

yz yz

zx zx

v v v

v v v e

v v v e

v eE

v v
v

v







 

 

 

 
 

    
    
    

       
             

    
       

 
 

 

The above equation is in the form  of {σ}=[D]{e} 

6. Write down the Derivation for plane stress and plane strain in two dimensional planes.(AU-

NOV/DEC-2011)            

PLANE STRESS 

yx z
xe v v

E E E

 
    

yx z
ye v v

E E E

 
     

For two dimensional plane stress problems, the normal stress, σz and the shear stress τxz, τyz are zero. 

τxz=τyz=σz=0 

The shear strain γxz, γyz are zero but ez≠0 

 

γxz= γyz=0 

substituteσz=0 in ex equation 

yx
xe v

E E


  -----------1 

substituteσz=0 in ey equation 

yx
ye v

E E


   ------------2 

Solving equation 1and 2 

2
( )

(1 )
x x y

E
e ve

v
  


 

2
( )

(1 )
y x y

E
ve e

v
  


 

We know that, 
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Shear stress, τxy = G γxy 

G-modulus of rigidity = E/2(1+v) 

γxy-shear strain 

v-poisson’s ratio 

2(1 )
xy xy

E

v
 

 2

(1 )

(1 )(1 ) 2

(1 )

(1 ) 2

xy xy

xy xy

E v

v v

E v

v

 

 




 




  

Arranging the equations in matrix form 

2

1 0

1 0
1

1
0 0

2

x x

y y

xy xy

v e
E

v e
v

v





 

 
    
    

    
        

   

The above equation is in the form of{σ}=[D]{e} 

The equation gives the two dimensional stress strain relationship   for plane stress problem. 

Where  [D]=stress-strain relationship matrix 

  2

1 0

1 0
1

1
0 0

2

v
E

D v
v

v

 
 
 

  


 
 
 

 

PLANE STRAIN 

For plane strain we assume the following strain to be zeroez=γxz=γyz=0 

the shear stresses τxz=τyz=0, but σz≠0 

from equation we know that 

1 0 0 0

1 0 0 0

1 0 0 0

1 2
0 0 0 0 0

2(1 )(1 2 )
1 2

0 0 0 0 0
2

1 2
0 0 0 0 0

2

x x

y y

z z

xy xy

yz yz

zx zx

v v v

v v v e

v v v e

v eE

v v
v

v







 

 

 

 
 

    
    
    

       
             

    
       

 
   
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Simplifying the above matrix we get 

1 0

1 0
(1 )(1 2 )

1 2
0 0

2

x x

y y

xy xy

v v e
E

v v e
v v

v





 

 
    
    

     
         

 

 

The above equation is in the form  of {σ}=[D]{e}. 

The equation gives the two dimensional stress strain relationship   for plane strain problem 

7. Derive the stiffness matrix equation for two dimensional element (CST element)   

We know that, 

Stiffness matrix, [K]=    
v

dvBDB  

      dvBDBk
T

  

Stiffness matrix,       dvBDBk
T

  

Where, A- area of the triangular element=

1 1

2 2

3 3

1
1

1
2

1

x y

A x y

x y

 
 


 
    

 t-thickness of the element 

 [B]-strain-displacement matrix 

 [B]=

















332211

321

321

000

000

2

1

qrqrqr

rrr

qqq

A

 

Where,  

1 2 3

2 3 1

3 1 2

1 3 2

2 1 3

3 2 1

( ) 0 4 4

( ) 4 0 4

( ) 0 0 0

( ) 1.5 3 1.5

( ) 0 1.5 1.5

( ) 3 0 3

q y y

q y y

q y y

r x x

r x x

r x x

     

    

    

     

     

    

 

 [D]-stress-strain relationship matrix. 

For plane stress problems, 
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  






















2

1
00

01

01

1 2
v

v

v

v

E
D  

Where, E-young’s or modulus of elasticity, 

 v-Poisson’s ratio. 

8. Determine the stiffness matrix for the CST element shown in fig. the coordinates are given 

in units of millimeters. Assume plane stress conditions. Take E=210 GPa, v = 0.25 and t = 

10 mm.  (April/May 2012)  

 
Given    

x1=20mm;  y1=30mm 

x2=80mm;  y2=30mm 

x3=50mm;  y3=120mm 

  young’s modulus,  E = 210 GPa = 210*109Pa = 210*103N/mm2 

  poisson’s ratio, v = 0.25 

  thickness t = 10mm 

To find: Stiffness matrix [k] 

Solution: we know that stiffness matrix, [k] = [B]T [D] [B] At 

area

1 1

2 2

3 3

1
1

1
2

1

x y

A x y

x y

 
 


 
      

1 20 30
1

1 80 30
2

1 50 120

A 

 

 

2

1
1(80*120 50*30) 20(120 30) 30(50 80)

2

2700

A

A mm

     

  

We know that strain-displacement 
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1 2 3

1 2 3

1 1 2 2 3 3

0 0 0
1

[ ] 0 0 0
2

q q q

B r r r
A

r q r q r q

 
 


 
    

1 2 3

2 3 1

3 1 2

1 3 2

2 1 3

3 2 1

( ) 30 120 90

( ) 120 30 90

( ) 30 30 0

( ) 50 80 30

( ) 20 50 30

( ) 80 20 60

q y y

q y y

q y y

r x x

r x x

r x x

     

    

    

     

     

    

 

Substitute the above values in the matrix equation 

90 0 90 0 0 0
1

[ ] 0 30 0 30 0 60
2

30 90 30 90 60 0

B
A

 
 

  
 
      

90 0 90 0 0 0
1

[ ] 0 30 0 30 0 60
2*2700

30 90 30 90 60 0

B

 
 

  
 
      

3 0 3 0 0 0
30

[ ] 0 1 0 1 0 2
2*2700

1 3 1 3 2 0

B

 
 

  
 
      

3

3 0 3 0 0 0

[ ] 5.55*10 0 1 0 1 0 2

1 3 1 3 2 0

B

 
 

  
 
      

We know that, Stress – strain relationship matrix for plane stress is 

  2

1 0

1 0
1

1
0 0

2

v
E

D v
v

v

 
 
 

  


 
 
 

   
 

5

2

1 0.25 0
2.1*10

0.25 1 0
1 (0.25)

1 0.25
0 0

2

D

 
 
 

  


 
 
 
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  3

4 1 0

56*10 1 4 0

0 0 1.5

D

 
 


 
  

 

  3 3

4 1 0 3 0 3 0 0 0

[ ] 56*10 1 4 0 *5.55*10 0 1 0 1 0 2

0 0 1.5 1 3 1 3 2 0

D B

   
   

  
   
        

 

 

4 1 0 3 0 3 0 0 0

[ ] 311.08 1 4 0 0 1 0 1 0 2

0 0 1.5 1 3 1 3 2 0

D B

   
   

  
   
        

 

 

12 1 12 1 0 2

[ ] 311.08 3 4 3 4 0 8

1.5 4.5 1.5 4.5 3 0

D B

  
 

   
 
      

We know that
 

3

3 0 3 0 0 0

[ ] 5.55*10 0 1 0 1 0 2

1 3 1 3 2 0

B

 
 

  
 
    

3

3 0 1

0 1 3

3 0 1
[ ] 5.55*10

0 1 3

0 0 2

0 2 0

TB

  
 

 
 
 

  
 

 
 
 

 

  3

3 0 1

0 1 3
12 1 12 1 0 2

3 0 1
[ ] [ ] 5.55*10 311.08 3 4 3 4 0 8

0 1 3
1.5 4.5 1.5 4.5 3 0

0 0 2

0 2 0

TB D B

  
 

 
    
   

             
 
 
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 

37.5 7.5 34.5 1.5 3 6

7.5 17.5 1.5 9.5 9 8

34.5 1.5 37.5 7.5 3 6
[ ] [ ] 1.728

1.5 9.5 7.5 17.5 9 8

3 9 3 9 6 0

6 8 6 8 0 16

TB D B

    
 

  
 
   

  
    

   
 
   

 

Substitute [B] T [D] [B] and A, t values in equation 

37.5 7.5 34.5 1.5 3 6

7.5 17.5 1.5 9.5 9 8

34.5 1.5 37.5 7.5 3 6
[ ] 1.728 *2700*10 /

1.5 9.5 7.5 17.5 9 8

3 9 3 9 6 0

6 8 6 8 0 16

k N mm

    
 

  
 
   

  
    

   
 
   

 

3

37.5 7.5 34.5 1.5 3 6

7.5 17.5 1.5 9.5 9 8

34.5 1.5 37.5 7.5 3 6
[ ] 46.656*10 /

1.5 9.5 7.5 17.5 9 8

3 9 3 9 6 0

6 8 6 8 0 16

k N mm

    
 

  
 
   

  
    

   
 
   

 

9. Evaluate  the stiffness matrix for the CST element shown in fig. the coordinates are given 

in units of millimeters. Assume plane stress conditions. Take E=2*105 N/mm2, v = 3 and t = 

10 mm. (AU-Nov/Dec-2013, Jan 2006)    

 

      

Given    

x1=0mm;  y1=0mm 

x2=3mm;  y2=0mm 

x3=1.5mm;  y3=4mm 

young’s modulus,  E = 2*105N/mm2,       poisson’s ratio, v = 0.3,         thickness t = 10mm 

To find: stiffness matrix [k] 
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Solution: we know thatstiffness matrix, [k] = [B]T [D] [B] At    

1 0 0
1

1 3 0
2

1 1.5 4

A 
 

2

1
1(12 0) 0 0

2

6

A

A mm

   


 

We know that strain-displacement 

1 2 3

1 2 3

1 1 2 2 3 3

0 0 0
1

[ ] 0 0 0
2

q q q

B r r r
A

r q r q r q

 
 


 
  

1 2 3

2 3 1

3 1 2

1 3 2

2 1 3

3 2 1

( ) 0 4 4

( ) 4 0 4

( ) 0 0 0

( ) 1.5 3 1.5

( ) 0 1.5 1.5

( ) 3 0 3

q y y

q y y

q y y

r x x

r x x

r x x

     

    

    

     

     

    

 

Substitute the above values in the matrix equation 

4 0 4 0 0 0
1

[ ] 0 1.5 0 1.5 0 3
2

1.5 4 1.5 4 3 0

B
A

 
 

  
 
    

4 0 4 0 0 0
1

[ ] 0 1.5 0 1.5 0 3
2*6

1.5 4 1.5 4 3 0

B

 
 

  
 
      

4 0 4 0 0 0
1

[ ] 0 1.5 0 1.5 0 3
2*6

1.5 4 1.5 4 3 0

B

 
 

  
 
    

4 0 4 0 0 0
1

[ ] 0 1.5 0 1.5 0 3
12

1.5 4 1.5 4 3 0

B

 
 

  
 
      

We know that Stress – strain relationshipmatrix for plane stress is 

  2

1 0

1 0
1

1
0 0

2

v
E

D v
v

v

 
 
 

  


 
 
 

   
 

5

2

1 0.3 0
2*10

0.3 1 0
1 (0.3)

1 0.3
0 0

2

D

 
 
 

  


 
 
 

 

  3

1 0.3 0

219.78*10 0.3 1 0

0 0 0.3

D

 
 


 
  

 



UNIT-III / TWO DIMENSIONAL SCALAR VARIABLE PROBLEMS P a g e  | 21 
 

ME8692 FINITE ELEMENT ANALYSIS   
 

  3

1 0.3 0 4 0 4 0 0 0
1

[ ] 219.78*10 0.3 1 0 * 0 1.5 0 1.5 0 3
12

0 0 0.3 1.5 4 1.5 4 3 0

D B

   
   

  
   
        

 

  3

1 0.3 0 4 0 4 0 0 0

[ ] 18.32*10 0.3 1 0 0 1.5 0 1.5 0 3

0 0 0.35 1.5 4 1.5 4 3 0

D B

   
   

  
   
        

 

  3

4 0.45 4 0.45 0 0.9

[ ] 18.32*10 1.2 1.5 1.2 1.5 0 3

0.525 1.4 0.525 1.4 1.05 0

D B

   
 

   
 
    

 

We  know that 

4 0 4 0 0 0
1

[ ] 0 1.5 0 1.5 0 3
12

1.5 4 1.5 4 3 0

B

 
 

  
 
    

4 0 1.5

0 1.5 4

4 0 1.51
[ ]

0 1.5 412

0 0 3

0 3 0

TB

  
 

 
 
 

  
 

 
 
 

 

  3

4 0 1.5

0 1.5 4
4 0.45 4 0.45 0 0.9

4 0 1.51
[ ] [ ] 18.32*10 1.2 1.5 1.2 1.5 0 3

0 1.5 412
0.525 1.4 0.525 1.4 1.05 0

0 0 3

0 3 0

TB D B

  
 

 
     
   

             
 
 

 

  3

16.78 3.9 15.21 0.3 1.57 3.6

3.9 7.85 0.3 3.35 4.2 4.5

15.21 0.3 16.78 3.9 1.578 3.6
[ ] [ ] 1.526*10

0.3 3.35 3.9 7.85 4.2 4.5

1.57 4.2 1.57 4.2 3.15 0

3.6 4.5 3.6 4.5 0 9

TB D B

    
 

  
 
   

  
    

   
 
   
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Substitute [B]T[D][B] and A, t values in equation 

3

16.78 3.9 15.21 0.3 1.57 3.6

3.9 7.85 0.3 3.35 4.2 4.5

15.21 0.3 16.78 3.9 1.578 3.6
[ ] 1.526*10 *10*6 /

0.3 3.35 3.9 7.85 4.2 4.5

1.57 4.2 1.57 4.2 3.15 0

3.6 4.5 3.6 4.5 0 9

k N mm

    
 

  
 
   

  
    

   
 
   

 

3

16.78 3.9 15.21 0.3 1.57 3.6

3.9 7.85 0.3 3.35 4.2 4.5

15.21 0.3 16.78 3.9 1.578 3.6
[ ] 91.6*10 /

0.3 3.35 3.9 7.85 4.2 4.5

1.57 4.2 1.57 4.2 3.15 0

3.6 4.5 3.6 4.5 0 9

k N mm

    
 

  
 
   

  
    

   
 
     

10.

 

10.For the plane strain element shown in fig. the nodal displacement are:

 

u1=0.005mm;v1=0.002mm 

u2=0.0mm;  v2=0.0mm 

u3=0.005mm; v3=0.0mm. determine the element stresses pandxyyx  21,,

leangletheprincip ,  E=70Gpa, and v=0.3 and use unit thickness for plane strain. All co-

ordinates are in mm. (AU-APR/MAY-2010) 

     

Given: nodal displacements: 

B u1=0.005mm ;  v1=0.002mm 

 u2=0.0mm ;  v2=0.0mm 

 u3=0.005mm ;  v3=0.0mm 

 x1=5mm ;  y1=15mm. 

 x2=15mm ;  y2=5mm. 

 x3=25mm ;  y3=15mm. 

young’s modulus, E=70Gpa=70X109 pa.=70X103 N/mm2 

possion’s ratio, v=0.3 

unit thickness i=1mm 

to find: (1) element stresses 

a. Normal stresses , σx 

b. Normal stresses, σy 

c. Shear stress, τxy 
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d. Maximum mormal stress, σ1 

e. Minimum normal stress, σ2 

f. Principal angle, øP 

Solution:  

 We know that, 

 Area of the element, A=

33

22

11

1

1

1

2

1

yx

yx

yx

A
=

15251

5151

15151

2

1

A
 

=       1152511515151525515151
2

1
XXXXXXXXX  A=100mm2 

Strain-displacement, [B]=

















332211

321

321

000

000

2

1

qrqrqr

rrr

qqq

A
 

Where, q1=y2-y3=5-15=-10 

            q2=y3-y1=15-15=0 

 q3=y1-y2=15-5=10 

 r1=x3-x2=25-15=10 

 r2=x1-x3=5-25=-20 

 r3=x2-x1=15-5=10 

substitute the above values in equation 

 

[B]=























10100201010

100200100

0100010

2

1
2q

A
 

Substitute area, a value 

[B]=























10100201010

100200100

0100010

1002

1
2q

X
 

We know that, 

Stress-strain relationship matrix [D] for plane strain problem is, 

 
  



























2

21
00

01

01

211 v
vv

vv

vv

E
D  
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 
  



























2

3.021
00

03.013..0

03.03.01

3.0213.01

1070 3

XX

X
D

 

 


















2.000

07.03..0

03.07.0

10615.134 3XD

 

 


















100

05.35.1

05.15.3

2.010615.134 3 XXD

 

 


















100

05.35.1

05.15.3

10923.26 3XD

 

  








































10100201010

100200100

0100010

1002

1

100

05.35.1

05.15.3

10923.26

2

3

q

X
XBD

 

  
























10100201010

35157003515

15353001535

615.134BD

 We know that,  

Stress, {σ}=[D]  [B]  {u} 

 =[D]  [B]































3

3

2

2

1

1

v

u

v

u

v

u

 























































0.0

005.0

0.0

0.0

002.0

005.0

10100201010

35157003515

15353001535

615.134 X  

























005.010002.010005.010

005.015002.035005.015

005.035002.015005.035

615.134

XXX

XXX

XXX



















08.0

07.0

003.0

615.134

 



















769.10

4223.9

038.4


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
































769.10

423.9

038.4

xy

y

x







 

a. Normal stresses , σx=1.038 N/mm2 

b. Normal stresses, σy=9.423 N/mm2 

c. Shear stress, τxy=10.769 N/mm2 

We know that,  

 Maximum normal stress, σmax=σ1= xy
yxyx 2

22













 



 

=  2
769.10

2

423.9038.4

2

423.9038.4








 



 

σ1=17.83 N/mm2 

Minimum normal stress, σmax=σ2= xy
yxyx 2

22













 



 

=  2
769.10

2

423.9038.4

2

423.9038.4








 



 

σ2=-4.369 N/mm2 

we know that, 

   priciple angle, tan 2 øp= 















423.9038.10

769.102
tan

2
1 X

yx

xy




 

     2 øp=-75.96º 

     øp=-37.98º 

Result:  

a. Normal stresses , σx=1.038 N/mm2 

b. Normal stresses, σy=9.423 N/mm2 

c. Shear stress, τxy=10.769 N/mm2 

d. Maximum mormal stress, σ1=17.83 N/mm2 

e. Minimum normal stress, σ2=-4.369 N/mm2 

f. Principal angle, øP=37.98º 

11. The two dimensional propped beam shwon in fig. is divided in two CST element. 

Determine the nodal displacement and element stresses using plate stress costions. Body 

force is negleced in compression with the external forces.Take: thickness,t=10mm, young’s 

moduls , E=2X105 N/mm2, poisson’sratio,v=0.25  
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Given: 

 

Thickness, t=10mm 

Young’s modulus, E=2X105 N/mm2 

Poisson’s ratio, v=0.25 

 

To find: (i) nodal displacement u1, v1, u2,v2,u3,v3 and u4,v4 

              (ii) element stress, σ1,σ2 

Solution: 

Consider (1): nodal displacements u1, v1, u2,v2,u3,v3 and u4,v4 
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Take node 1 as origin. 

For node 1 : 0,0 

For node 2: 1000, 750 

For node 3: 0,750 

Stiffness matriux, [K]= [B]T [D] [B] A t 

Where, A= area of the triangular element 

 =

33

22

11

1

1

1

2

1

yx

yx

yx

A
=

1 0 0
1

1 1000 750
2

1 0 750
A

 

 

3 2

1 1000 750
1 1000 750 0

2 2

375 10

X
X X X

A X mm

  


 

Strain- displacement matrix, [B] =

















332211

321

321

000

000

2

1

qrqrqr

rrr

qqq

A

 

Where, q1=y2-y3=750-750=0 

            q2=y3-y1=750-0=750  

 q3=y1-y2=0-750=-750 

 r1=x3-x2=0-1000=-1000 

 r2=x1-x3=0-0=0 

 r3=x2-x1=1000-0=1000 

substitute the above values in equation 

 

[B]=

0 0 750 0 750 0
1

0 1000 0 0 0 1000
2

1000 0 0 750 1000 750
A

 
 


 
   

 

Substitute area, a value 

[B]=
3

0 0 750 0 750 0
1

0 1000 0 0 0 1000
2 375 10

1000 0 0 750 1000 750
X X

 
 


 
   
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[B]=
3

0 0 3 0 3 0
250

0 4 0 0 0 4
2 375 10

4 0 0 3 4 3
X X

 
 


 
   

 

Stress=strain relationship matrix [D] for plane stress problem is, 

 
 2

1 0

1 0
1

1
0 0

2

v
E

D v
v

v

 
 
 

  
  

 
 

 
  

5

2

1 0.25 0
2 10

0.25 1 0
1 0.25

1 0.25
0 0

2

X
D

 
 
 

  
  

 
   

 
5

1 0.25 0
2 10

0.25 1 0
0.9375

0 0 0.375

X
D

 
 


 
  

 
5

4 1 0
2 10 0.25

1 4 0
0.9375

0 0 1.5

X X
D

 
 


 
  

 

  5

4 1 0

2 10 0.2667 1 4 0

0 0 1.5

D X X

 
 


 
  

 

   5

3

4 1 0 0 0 3 0 3 0
250

2 10 0.2667 1 4 0 0 4 0 0 0 4
2 375 10

0 0 1.5 4 0 0 3 4 3

B D X X X
X X

   
   

 
   
       

 

  
5

3

4 1 0 0 0 3 0 3 0
250 2 10 0.2667

1 4 0 0 4 0 0 0 4
2 375 10

0 0 1.5 4 0 0 3 4 3

X X X
B D X

X X

   
   

 
   
       

  

0 0 0 0 4 0 12 0 0 0 0 0 12 0 0 0 4 0

17.78 0 0 0 0 16 0 3 0 0 0 0 0 3 0 0 0 16 0

0 0 16 0 0 0 0 0 0 0 0 4.5 0 0 6 0 0 4.5

B D

             
 

             
 
             

  

0 4 12 0 12 4

17.78 0 16 3 0 3 16

16 0 0 4.5 6 4.5

B D

  
 

  
 
   

 

We know that, 



UNIT-III / TWO DIMENSIONAL SCALAR VARIABLE PROBLEMS P a g e  | 29 
 

ME8692 FINITE ELEMENT ANALYSIS   
 

 

[B]=
3

0 0 3 0 3 0
250

0 4 0 0 0 4
2 375 10

4 0 0 3 4 3
X X

 
 


 
   

[B]T=
3

0 0 4

0 4 0

3 0 0250

0 0 32 375 10

3 0 4

0 4 3

X X

 
 


 
 
 
 
 
 

 

 

[B]T[D]  

3 3

0 0 4 0 0 4

0 4 0 0 4 0
0 4 12 0 12 4

3 0 0 3 0 0250 250
17.78 0 16 3 0 3 16

0 0 3 0 0 32 375 10 2 375 10
16 0 0 4.5 6 4.5

3 0 4 3 0 4

0 4 3 0 4 3

X X
X X X X

    
   

 
      
     

      
           
   

    

 

[K]= 3

24 0 0 18 24 18

0 64 12 0 12 64

0 12 36 0 36 12
5.927 X10

18 0 0 13.5 18 13.5

24 12 36 18 60 30

18 64 12 13.5 30 77.5



  
 

 
 
  
 
  
   
 

   

 

4

53.28 0 0 39.96 53.28 39.96

142.08
0 142.08 26.64 0 26.64

,[ ] 1 10 0 26.64 79.92 0 79.92 26.64

39.96 0 0 29.97 39.96 29.97

53.28 26.64 79.92 39.96 133.2 66.6

39.96 142.08 26.64 29.97 66.6 172.05

stiffnessmatri k X

  



 



  
 

  
   












 

Consider (2): nodal displacements u1, v1, u2,v2,u3,v3 and u4,v4 
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Take node 1 as origin. 

For node 1 : 0,0 

For node 2: 1000, 750 

For node 3: 0,750 

Stiffness matriux, [K2]= [B]T [D] [B] A t 

Where, A= area of the triangular element 

 =

33

22

11

1

1

1

2

1

yx

yx

yx

A

 

A=

1 0 0
1

1 1000 0
2

1 1000 750
A

 

=

 

3 2

1 1000 750
1 1000 750 0

2 2

375 10

X
X X X

A X mm

  


 

Strain- displacement matrix, [B] =

















332211

321

321

000

000

2

1

qrqrqr

rrr

qqq

A

 

Where, q1=y2-y3=0-750=-750 
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            q2=y3-y1=750-0=750  

 q3=y1-y2=0-0=0 

 r1=x3-x2=1000-1000=0 

 r2=x1-x3=0-1000=-1000 

 r3=x2-x1=1000-0=1000 

substitute the above values in equation 

 

[B]=

750 0 750 0 0 0
1

0 0 0 1000 0 1000
2

0 750 1000 750 1000 0
A

 
 


 
   

 

Substitute area, a value 

[B]=
3

750 0 750 0 0 0
1

0 0 0 1000 0 1000
2 375 10

0 750 1000 750 1000 0
X X





 

 

[B]=
3

3 0 3 0 0 0
250

0 0 0 4 0 4
2 375 10

0 3 4 3 4 0
X X

 
 


 
   

 

Stress=strain relationship matrix [D] for plane stress problem is, 

 
 2

1 0

1 0
1

1
0 0

2

v
E

D v
v

v

 
 
 

  
  

 
 

 
  

5

2

1 0.25 0
2 10

0.25 1 0
1 0.25

1 0.25
0 0

2

X
D

 
 
 

  
  

 
   

 
5

1 0.25 0
2 10

0.25 1 0
0.9375

0 0 0.375

X
D

 
 


 
  

 
5

4 1 0
2 10 0.25

1 4 0
0.9375

0 0 1.5

X X
D

 
 


 
  

 

  5

4 1 0

2 10 0.2667 1 4 0

0 0 1.5

D X X

 
 


 
  

 

   5

3

4 1 0 3 0 3 0 0 0
250

2 10 0.2667 1 4 0 0 0 0 4 0 4
2 375 10

0 0 1.5 0 3 4 3 4 0

B D X X X
X X

   
   

 
   
       
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  

12 0 12 4 0 4

17.78 3 0 3 16 0 16

0 4.5 6 4.5 6 0

B D

  
 

  
 
   

 

We know that, 

 

[B]=
3

3 0 3 0 0 0
250

0 0 0 4 0 4
2 375 10

0 3 4 3 4 0
X X

 
 


 
   

[B]T=
3

3 0 0

0 0 3

3 0 4250

0 4 32 375 10

0 0 4

0 4 0

X X

 
 


 
 
 

 
 
 
 

 

 

[B]T[D] [B]=
3

3 0 0

0 0 3
12 0 12 4 0 4

3 0 4250
17.78 3 0 3 16 0 16

0 4 32 375 10
0 4.5 6 4.5 6 0

0 0 4

0 4 0

X
X X

 
 


    
   

          
 
 

 

[K]= 3

36 0 36 12 0 12

0 13.5 18 13.5 18 0

36 18 60 30 24 12
5.927 X10

12 13.5 30 77.5 18 64

0 18 24 18 24 0

12 0 12 64 0 64



 
 


 
   
 

   
  
 
  

 

4

79.92 0 79.92 26.64 0 26.64

0
0 29.97 39.96 29.97 39.96

,[ ] 1 10 79.92 39.96 133.2 66.6 53.28 26.64

26.64 29.97 66.6 172.05 39.96 142.08

0 39.96 53.28 39.96 53.28 0

26.64 0 26.64 142.08 0 142.08

stiffnessmatri k X

  

  



   
   


 
 











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Global stiffness matrix [K] 

Assemble the stiffness matrix equation  

Global stiffness matrix, [k]=1x104 

U1 V1 U2 V2 U3 V3 U4 V4  

53.28+

79.92 

0+0 -79.92 26.64 0+0 -39.96 

-26.64 

-53.28 39.96 U1 

0+0 +142.08

+29.97 

39.96 -29.97 -26.64+ 

-39.96 

0+0 26.64 -142.28 V1 

-79.92 39.96 133.2 -66.6 -53.26 26.64 0 0 U2 

26.64 -29.97 -66.6 172.06 39.96 -142.08 0 0 V2 

0+0 -26.64+ 

-39.96 

-53.28 39.96 79.92 

+53.28 

0+0 -79.92 26.64 U3 

-

39.96+ 

-26.64 

0+0 26.64 -142.28 0+0 29.97+1

42.08 

39.96 -29.96 V3 

-53.28 26.64 0 0 -79.92 39.96 133.2 -66.6 U4 

39.96 -142.08 0 0 26.64 -29.97 -66.6 172.05 V4 
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Global stiffness matrix [k]=1X104

1 1 2 2 3 3 4 4

133.2 0 79.92 26.64 0 66.6 53.28 39.96

0 172.05 39.96 29.97 66.6 0 26.64 142.08

79.922 39.96 133.2 66.6 53.28 26.64 0 0

26.64 29.97 66.6 172.06 39.96 142.08 0 0

0 66.6 53.28 39.96 133.2 0 79.92 26.64

66.6 0 26.

u v u v u v u v

  

  

  

  

  



1

1

2

2

3

3

4

4

64 142.08 0 172.08 39.96 29.97

53.28 26.64 0 0 79.92 39.96 133.2 66.6

39.96 142.08 0 0 26.64 29.97 66.6 172.05

u

v

u

v

u

v

u

v

 
 
 
 
 
 
 
 
 
  
 
   

    

 

we know that, general force equation is {F}=[k] {u} 

1

1

2

2 4

3

3

4

4

133.2 0 79.92 26.64 0 66.6 53.28 39.96

0 172.05 39.96 29.97 66.6 0 26.64 142.08

79.922 39.96 133.2 66.6 53.28 26.64 0 0

1 10 26.64 29.97 66.6 172.06 39.96 142

X

y

x

y

x

y

x

y

F

F

F

F
X

F

F

F

F

















 
   

    
 

   
 

    
 
 
 
 
 
 

1

1

2

2

3

3

4

4

.08 0 0

0 66.6 53.28 39.96 133.2 0 79.92 26.64

66.6 0 26.64 142.08 0 172.08 39.96 29.97

53.28 26.64 0 0 79.92 39.96 133.2 66.6

39.96 142.08 0 0 26.64 29.97 66.6 172.05

u

v

u

v

u

v

u

v

 
 
 
 
 
 
  

      
    
 
   

    












 
 



 

Applying boundary conditions  

1.

 Node 1, and node 4 are fixed. So,  u1, v1, and u4,v4 are =0 

2.

 Node 2, is moving in x direction, so, u2=0 but, v2=0 

3.

 At node 3, a point load of 75000N is acting in x direction, so, F3-x=75,000N 

4.

 Body force is neglected. So, the remaining forces are zero. 
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5.

 

1

1

2

2

3

3

4

4

X

y

x

y

x

y

x

y

F

F

F

F

F

F

F

F

















=0 

Substitute the above values in equation 

4

3

0
133.2 0 79.92 26.64 0 66.6 53.28 39.96

0
0 172.05 39.96 29.97 66.6 0 26.64 142.08

0
79.922 39.96 133.2 66.6 53.28 26.64 0 0

0
1 10 26.64 29.97 66.6 172.06 39.96 142.08 0 0

75 10
0 66.6 53.28 39

0

0

0

X
X

 
   

    
 

   
 

    
   
 
 
 
 
 

2

3

3

0

0

0

.96 133.2 0 79.92 26.64

66.6 0 26.64 142.08 0 172.08 39.96 29.97
0

53.28 26.64 0 0 79.92 39.96 133.2 66.6
0

39.96 142.08 0 0 26.64 29.97 66.6 172.05

u

u

v

 
  
  
  
  
  
    

      
     
   
     

     

In the above equation u1, v1, u2,v2,u3,v3 and u4,v4=0 so, delete the corresponding row and column of [K] 

matrix. Hence the equation reduces to  

2

3 4

3

3

0 133.2 53.28 26.64

75 10 1 10 53.28 133.2 0

0 26.64 0 172.05

u

X X u

v

     
    

     
           

2

3

3

0 133.2 53.28 26.64

7.5 53.28 133.2 0

0 26.64 0 172.05

u

u

v

     
    

     
           

2

3

3

0 133.2 53.28 26.64

18.75 53.28 133.2 0

0 26.64 0 172.05

u

u

v

     
    

     
           
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2

3

3

0 133.2 53.28 26.64

18.75 0 279.72 26.64

18.75 0 0 4349.81

u

u

v

     
    

    
           

-4349.81 v3=18.75 

V3=-0.00431mm 

279.72u3+26.64v3=18.75 

279.72u3+26.64X(-0.00431)=18.75 

u3=0.067mm 

u2=0.02766mm 

nodal displacements: 

u1=0mm;   v1=0mm 

u2=0.02766mm; v2 =0mm 

u3 =0.067mm ,v3 =-0.00431 

u4 =0mm; v4=0mm 

stress in each element: 

wekow that. Stress, {σ}=[D] [B] {u} 

for element (1) nodal displacement u1, v1, u3,v3 and u4,v4 
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stress , {σ}=17.78

1

1

3

3

4

4

0 4 12 0 12 4

0 16 3 0 3 16

6 0 0 4.5 6 4.5

u

v

u

v

u

v

 
 
 
 

    
  

    
     
 
 
 
 

 

2

14.295

3.574 /

0.345

x

y

xy

N mm







   
   

   
       

For element (2) 

stress , {σ}=17.78

1

1

2

2

3

3

12 0 12 4 0 4

3 0 3 16 0 16

0 4.5 6 4.5 6 0

u

v

u

v

u

v

 
 
 
 

    
  

    
      
 
 
 
 

 

2

5.595

0.2492 /

4.196

x

y

xy

N mm







   
   

   
   

    

Result:  

1.

 Nodal displacement: u1=0, v1=0, u2 =0.02766,v2 =0,u3 =0.067,v3 =-0.00431 and u4 =0,v4 =0 

2.

 Element stresses: 

For elements (1) 

2

14.295

3.574 /

0.345

x

y

xy

N mm







   
   

   
       
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For elements (2) 

2

5.595

0.2492 /

4.196

x

y

xy

N mm







   
   

   
   

    

12. A thin plate is subjected to surface traction as shown in fig. calculate the global stiffness 

matrix.    (Nov/Dec 2011, April/May 2010)      

  

 
Take:  t=25mm, young’s moduls , E=2X105 N/mm2, poisson’sratio,v=0.30.  

assume plane stress condition. 

Given : 

 Thickness, t:25mm 

Young’s modulus, E=2X105 N/mm2 

Poisson’ ratio, v=0.30 

Breadth=250mm 

Length, l=500mm 

Tensile surface traction, T=0.4 N/mm2 

The tensile surface traction is converted into nodl force. 

 F=1/2 TA=1/2 X T X (bxt) 

 =1/2X0.4X250X25 

 Nodal force, F=1250N 

 

To find: 

Stiffness matrix [k] 

Solution: 



UNIT-III / TWO DIMENSIONAL SCALAR VARIABLE PROBLEMS P a g e  | 39 
 

ME8692 FINITE ELEMENT ANALYSIS   
 

 

Consider (1): nodal displacements u1, v1, u2,v2,u3,v3 and u4,v4 

 

Take node 1 as origin. 

For node 1 : (0,0) 

For node 2: (500, 250) 

For node 3: (0,250) 

Stiffness matriux, [K]= [B]T [D] [B] A t 

Where, A= area of the triangular element 

 =

33

22

11

1

1

1

2

1

yx

yx

yx

A

1 0 0
1

1 500 250
2

1 0 250
A

 

3 2

1
1 500 250 0

2

62.5 10

X X X

A X mm

 


 

Strain- displacement matrix, [B] =

















332211

321

321

000

000

2

1

qrqrqr

rrr

qqq

A
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Where, q1=y2-y3=250-250=0 

            q2=y3-y1=250-0=250  

 q3=y1-y2=0-250=-250 

 r1=x3-x2=0-500=-500 

 r2=x1-x3=0-0=0 

 r3=x2-x1=500-0=500 

Substitute the above values in equation 

 

[B]=

0 0 500 0 250 0
1

0 500 0 0 0 500
2

500 0 0 250 500 250
A

 
 


 
   

 

Substitute area, a value 

[B]=
3

0 0 500 0 250 0
1

0 500 0 0 0 500
2 62.5 10

500 0 0 250 500 250
X X

 
 


 
   

 

[B]=
3

0 0 1 0 1 0
250

0 2 0 0 0 2
2 62.5 10

2 0 0 1 2 1
X X

 
 


 
   

 

Stress=strain relationship matrix [D] for plane stress problem is, 

 
 2

1 0

1 0
1

1
0 0

2

v
E

D v
v

v

 
 
 

  
  

 
 

 
  

5

2

1 0.3 0
2 10

0.3 1 0
1 0.3

1 0.3
0 0

2

X
D

 
 
 

  
  

 
   

 
5

1 0.3 0
2 10

0.3 1 0
0.91

0 0 0.35

X
D

 
 


 
  

 

  
5

3

1 0.3 0 0 0 1 0 1 0
2 10 250

0.3 1 0 0 2 0 0 0 2
0.91 2 62.5 10

0 0 0.35 2 0 0 1 2 1

X
B D X

X X

   
   

 
   
       

 

  

0 0.6 1 0 1 0.6

439.56 0 2 0 0 0 2

0.7 0 0 0.35 0.7 0.35

B D

  
 

 
 
   
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We know that, 

[B]=
3

0 0 1 0 1 0
250

0 2 0 0 0 2
2 62.5 10

2 0 0 1 2 1
X X

 
 


 
   

[B]T=
3

0 0 2

0 2 0

1 0 0250

0 0 12 62.5 10

1 0 2

0 2 1

X X

 
 


 
 
 
 
 
 

 

 

[B]T[D][B]=

  

5

3 32

0 0 2

0 2 0
1 0.3 0 0 0 1 0 1 0

1 0 0250 2 10 250
0.3 1 0 0 2 0 0 0 2

0 0 12 62.5 10 2 62.5 101 0.3
1 0.3 2 0 0 1 2 1

0 01 0 2
2

0 2 1

X
X X

X X X X

 
   
     
     

     
           

  
 

 

[K]=
3

1.4 0 0 0.7 1.4 0.7

0 4 0.6 0 0.6 4

0 0.6 1 0 1 0.6
1373.59 10

0.7 0 0 0.35 0.7 0.35

1.4 0.6 1 0.7 2.4 1.3

0.7 4 0.6 0.35 1.3 4.35

X

  
 

 
 
  
 
  
  
 

   

 

3

1923.08 0 0 961.513 1923.026 961.513

5494.36
0 5494.36 824.154 0 824.154

,[ ] 1 10 0 824.24 1373.59 0 1373.59 824.24

961.513 0 0 480.7565 961.513 480.7565

1923.026 84.24 1373.59 961.513 3296.616 1785.6697

stiffnessmatri k X

 




  

 

  

961.513 5494.36 824.154 480.756 1785.67 5975.1165

 
 
 
 
 
 
 
 
 
    

 

Consider (2): nodal displacements u1, v1, u2,v2,u3,v3 and u4,v4 

Take node 1 as origin. 



UNIT-III / TWO DIMENSIONAL SCALAR VARIABLE PROBLEMS P a g e  | 42 
 

ME8692 FINITE ELEMENT ANALYSIS   
 

For node 1 : (0,0) 

For node 2: (500, 0) 

For node 3: (500,250) 

Stiffness matriux, [K2]= [B]T [D] [B] A t 

Where, A= area of the triangular element 

 =

33

22

11

1

1

1

2

1

yx

yx

yx

A

1 0 0
1

1 500 0
2

1 500 250
A

 

3 2

1 500 250
1 500 250 0

2 2

62.55 10

X
X X X

A X mm

  


 

Strain- displacement matrix, [B] =

















332211

321

321

000

000

2

1

qrqrqr

rrr

qqq

A

 

Where, q1=y2-y3=0-250=-250            q2=y3-y1=250-0=250  q3=y1-y2=0-0=0    

r1=x3-x2=500-500=0  r2=x1-x3=0-500=-500  r3=x2-x1=500-0=500 

Substitute the above values in equation 

[B]=

250 0 250 0 0 0
1

0 0 0 500 0 500
2

0 250 500 250 1000 0
A

 
 


 
   

 

Substitute area, a value       [B]=
3

1 0 1 0 0 0
1

0 0 0 2 0 2
2 62.5 10

0 1 2 1 2 0
X X

 
 


 
   

 

Stress=strain relationship matrix [D] for plane stress problem is, 

 
 2

1 0

1 0
1

1
0 0

2

v
E

D v
v

v

 
 
 

  
  

 
 

 
  

5

2

1 0.3 0
2 10

0.3 1 0
1 0.3

1 0.3
0 0

2

X
D

 
 
 

  
  

 
 

 
5

1 0.3 0
2 10

0.3 1 0
0.91

0 0 0.35

X
D

 
 


 
  

 

  
5

3

1 0.3 0 1 0 1 0 0 0
2 10 250

0.3 1 0 0 0 0 2 0 2
0.91 2 62.5 10

0 0 0.35 0 1 2 1 2 0

X
B D X

X X

   
   

 
   
       
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  

1 0 1 0.6 0 0.6

439.56 3 0 0.3 2 0 2

0 0.35 0.7 0.35 0.7 0

B D

  
 

  
 
   

 

We know that, 

[B]=
3

1 0 1 0 0 0
250

0 0 0 2 0 2
2 62.5 10

0 1 2 1 2 0
X X

 
 


 
   

[B]T=
3

1 0 0

0 0 1

1 0 2
2 10

0 2 1

0 0 2

0 2 0

X 

 
 


 
 
 

 
 
 
 

 

[B]T[D] [B]=
3

1 0 0

0 0 1
1 0 1 0 0 0

1 0 2
2 10 439.96 0 0 0 2 0 2

0 2 1
0 1 2 1 2 0

0 0 2

0 2 0

X X X

 
 


   
   

         
 
 

 

[K]=

1 0 1 0.6 0 0.6

0 0.35 0.7 0.35 0.7 0

1 0.7 2.4 1.3 1.4 0.6
0.8791

0.6 0.35 1.3 4.35 0.7 4

0 0.7 1.4 0.7 1.4 0

0.6 0 0.6 4 0 4

  
 

 
 
   
 

   
  
 
  

 

2

1373.59 0 1373.59 824.154 0 824.154

0
0 480.7565 961.513 480.7565 961.13

,[ ] 1373.59 961.513 3296.616 1785.667 1923.026 824.154

824.154 480.7565 1785.667 5975.165 961.513 5494.36

0 961.513 1923.026 9

stiffnessmatri k

 

 

   

  

  61.513 1923.026 0

824.154 0 824.154 5494.36 0 5494.36

 
 
 
 
 
 
 
 
 
   

 

Global stiffness matrix [K]   Assemble the stiffness matrix equation    

Global stiffness matrix, [k]=1x103 
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U1 V1 U2 V2 U3 V3 U4 V4  

1923.026+

1373.59 

0+0 -1373.59 824.154 0+0 -

961.513+

-824.154 

-1923.026 961.513 U1 

0+0 5494.36+

480.7565 

961.513 -

480.7565 

-

824.154+-

961.513 

0+0 824.154 -5494.36 V1 

-1373.59 961.513 3296.61

6 

-

1785.667 

-1923.026 824.154 0 0 U2 

824.24 -

480.7565 

-

1785.66

7 

5975.116

5 

961.513 -5494.36 0 0 V2 

0+0 -

824.154+

-961.513 

0+-

1923.02

6 

0+961.51

3 

1373.59+1

923.026 

0+0 -1373.59 824.154 U3 

-961.513+-

824.154 

0+0 0+824.1

54 

0+-

5494.36 

0+0 961.513 3296.616 -1785.667 V3 

-1923.026 824.154 0 0 -1373.59 961.513 3296.616 -1785.667 U4 

961.513 -5494.36 0 0 824.154 -

480.7565 

-1785.667 -5975.1165 V4 



UNIT-III / TWO DIMENSIONAL SCALAR VARIABLE PROBLEMS P a g e  | 45 
 

ME8692 FINITE ELEMENT ANALYSIS   
 

Global stiffness matrix [k]=1X103

1 1 2 2 3 3 4 4

3296.616 0 1373.59 824.154 0 1785.667 1923.026 961.513

0 5975.1165 961.513 480.7565 1785.667 0 824.154 5496.36

1373.59 961.513 3296.616 1785.667 1923.026 824.154 0 0

824.154 480.7565 1785.667 5975.116

u v u v u v u v

  

  

  

  5 961.513 5494.36 0 0

0 1785.667 1923.026 961.513 3296.616 0 1373.59 824.154

1785.667 0 824.154 5494.36 0 5975.165 961.513 480.7565

1923.026 824.24 0 0 1373.59 961.513 3296.616 1785.667

961.513 5494.36 0 0 824.154 480.7565



  

  

  

 

1

1

2

2

3

3

4

4
1785.667 5975.1165

u

v

u

v

u

v

u

v

 
 
 
 
 
 
 
 
 
 
 
 
  

 

  31 10

3296.616 0 1373.59 824.154 0 1785.667 1923.026 961.513

0 5975.1165 961.513 480.7565 1785.667 0 824.154 5496.36

1373.59 961.513 3296.616 1785.667 1923.026 824.154 0 0

824.154 480.7565 1785.667 5975.1165 961.513

k X X

  

  

  

  5494.36 0 0

0 1785.667 1923.026 961.513 3296.616 0 1373.59 824.154

1785.667 0 824.154 5494.36 0 5975.165 961.513 480.7565

1923.026 824.24 0 0 1373.59 961.513 3296.616 1785.667

961.513 5494.36 0 0 824.154 480.7565 1785.66



  

  

  

   7 5975.1165

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

THERMAL PROBLEM 

Temperature effect: 

Distribution of the change in temperature (ΔT) is known as strain. Due to the change in temperature can 

be considered as an initial strain e0.  

{ e0} = 





















0

T

T





 for general and plain stress problem 

Where, ΔT ---  change in temperature 

α  --- co-efficient of thermal expansion 
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For Plain strain problem 

{ e0} = (1+µ)





















0

T

T





 

Where,e0----initial strain,    

µ ----- Poissons ratio 

ΔT ---  change in temperature 

α --- co-efficient of thermal expansion 

the stress and strain are releated by the following relation, 

e = D (e-e0) 

σ = D (Bu - e0) 

where, e0--- initial strain 

σ---- stress 

D----stress strain relationship matrix 

B----strain displacement relationship matrix 

u---displacement 

Heat transfer in two dimensional elements: the shape function and formulae are similar to that of the 

CST element. 

Governing Equation for 2D Heat transferby conduction and convection 

 

 

 

0)(
2

2

2

2


















TTh

y

T

x

T
k
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Weak form of the equation 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

13. Problem: determine the temperature distribution on the plate 

 

 

 

 

dxdyyx whT

dxdyyxhTwdxdy
y

w

y

T
dxdy

x

w

x

T
 

),(

),(






















 



  dxdy

y

N

y

N
dxdy

x

N

x

N
kK

jiji

convij


 y)x + γ + β (α
A

  (x,y)  = N iii

e

i
2

1

 























2

3

2

332323131

3232

2

2

2

22121

31312121

2

1

2

1

4






A

k
K conv

e

 

1

21

12

6













p

hpl
k conv



































1

1

0

2
3

2

1
hlT

q

q
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Element 1 and 2                  Element 3  

β1 = -0.15  ,1 = 0,       β1 = 0.15    , 1 = -0.4  

β2 = 0.15  ,2 = -0.4    β2 = 0.3      , 2  = 0 

β3 = 0       , 3 = 0.4     β3 = -0.15   , 3 = 0.4 

 

 

  

 

 

 

 

 

 

 
























2

3

2

332323131

3232

2

2

2

22112

31312121

2

1

2

1

4
][







A

k
k e



























16.016.00

16.01825.00225.0

00225.00225.0

15.04.0
2

4

5.1
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Substitute forT4& T5as 180º and evaluate T1, T2 ,T3 

 

STIFFNESS MATRIX FOR BI LINEAR RECTANGULAR ELEMENT 
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14. Explain about the torsion of non-circular shaft 

TORSION OF NON-CIRCULAR SHAFT 

The first application area is the torsion of Non-Circular sections.  The governing differential equation is 

        

where G - shear modulus of the material  

 - is the angle of twist.  

 

The governing equation for the torsion problem is given by 

 

 

 

 

 

On the free boundary   = 0. 

Here  - is a stress function  

The shear stresses within the shaft are related to the derivatives of  with respect to x and y. 

 

On the free boundary   = 0.  This is the case of a Poisson’s Equation 

To derive the weak form multiply the governing equation with a weighting function w(x,y) 

 

 

 

On simplifying,  the shape function can be expressed as 

 

0  =  2 +  
G

1
 +   

1
2

2

2

2










yxG

0  =  2 +  
G

1
 +   

1
2

2

2

2










yxG

Gθ   = - 
y

 +  
x

  2
2

2

2

2









y
 = τ zx





x
 = - τ zy





02
2

2

2

2

 Gθ   
y

 +  
x

  








0),()2(
2

2

2

2

 dxdyyxwGθ
y

 +  
x 







 y)x + γ + β (α
A

  (x,y)  = N iii

e

i
2

1



UNIT-III / TWO DIMENSIONAL SCALAR VARIABLE PROBLEMS P a g e  | 52 
 

ME8692 FINITE ELEMENT ANALYSIS   
 

 

 

 

Finite element equation for torsional triangular element 

 

 

 

Where, θ angle o twist, f force vector 

QUADRILATERAL ELEMENTS: 

Each node is allowed to move in only one direction ‘+x’ in one dimensional problems, but in two 

dimensional problems, each node is permitted to move in the two directions (i.e) x and y. Each node has 

two degrees of freedom (Nodal Displacements) 

Derivation of shape function for the quadrilateral elements: 

Consider a four node rectangular element, the coordinates of the nodes are  

Node 1: x1,y1Node 2: x2,y2Node 3: x3,y3Node 4: x4,y4,  

It has eight unknown displacement degrees of freedom. 

The shape functions are 

N1 =(1-x/l-y/h+xy/lh),        N2 =(x/l-xy/lh)            N3 =(xy/lh)           N4 =(y/h-xy/lh) 

Assembling the equations in matrix form  

Displacement form, 
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15.

 Derive shape functions for 4 noded rectangular parent element by using natural co-

ordinate system and coordinate transformation.     

 

Consider a four noded rectangular element as shown in fig. the parent element is defined in ε and η 

co-ordinates natural co-ordinates ε is varying from -1 to 1 and η is also varying -1 to 1 

We know that, 

Shape function value is unity at its own node and its value is zero at other nodes. 

At node 1: 

(co-ordinates ε=-1, η=-1) 

 Shape function N1=1 at node 1 

   N1=0 at node 2, 3, and 4 

N1 has to be in the form oof N1=C(1-ε) (1-η) 

Where C is cnsatant 

Substitute ε=-1 and η=-1 in equation N1=C(1+1) (1+1) 

N1=4C                 1=4C    C=1/4 

  1

1
1 1

4
N    

 

At node 2: 

(co-ordinates ε=1, η=-1) 

 Shape function N2=1 at node 2 
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   N2=0 at node 1, 3, and 4 

N2 has to be in the form oof N2=C(1+ε) (1-η) 

Where C is cnsatant 

Substitute ε=1 and η=-1 in equation N2=C(1+1) (1+1) 

N2=4C   1=4C   C=1/4 

  2

1
1 1

4
N    

 

At node 3: 

(co-ordinates ε=1, η=1) 

 Shape function N3=1 at node 3   N3=0 at node 1, 2, and 4 

N3 has to be in the form of N3=C(1+ε) (1+η) 

Where C is cnsatant 

Substitute ε=1 and η=1 in equation N3=C(1+1) (1+1)  

N3=4C  1=4C    C=1/4 

  3

1
1 1

4
N    

 
At node 4: 

(co-ordinates ε=-1, η=1) 

 Shape function N4=1 at node4   N4=0 at node 1, 2, and 3 

N4 has to be in the form of N4=C(1-ε) (1+η) 

Where C is cnsatant 

Substitute ε=1 and η=1 in equation N4=C(1+1) (1+1) 

N3=4C   1=4C   C=1/4 
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  4

1
1 1

4
N    

 

Consider a point P with coordinate (ε,η) if displacement function u=

u

v

 
 
 

represents to be 

displacement components of  a point located at (ε,η) then, 

u=N1u1+N2  u2=N3 u3+N4 u4 and v=N1v1+N2 v2=N3v+N4 v4 

it can be in matrix form as,  

1

1

2

21 2 3

31 2 3

3

4

4

0 0 0

0 0 0

u

v

u

vN N Nu
u

uN N Nv

v

u

v

 
 
 
 
 

    
     
     

 
 
 
 
 

 
In the isoparametric formulation. For global system, the co0ordinates of the nodal points are (x1,y1), 

(x2,y2) , ), (x3,y3) and ), (x4,y4)  in order to get mapping the co-ordinate point p is defined as  

x=N1x1+N2  x2=N3 x3+N4 x4 and  y=N1y1+N2 y2=N3y+N4 y4 

The above equations  can be written in matrix form as 

1

1

2

21 2 3

31 2 3

3

4

4

0 0 0

0 0 0

x

y

x

yN N Nx
u

xN N Ny

y

x

y

 
 
 
 
 

    
     
     

 
 
 
 
   

HIGHER ORDER ELEMENTS:

 The higher order element can be either a complex or a multiple element. 

Higher order elements are nothing but if the interpolation polynomial is the order of two or more 

elements. 
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In the higher order elements, some secondary node are introduced in addition to the primary nodes in 

order to match the number of nodal degrees of freedom with the number of constants in the interpolation 

polynomial. 

16. Derive the shape function for eight noded triangular element. 

Consider  a eight noded rectangular element. It belongs to the serendipity family of elements. It 

consists of eight nodes, which are located on the boundary. 

 

1

1
(1 )(1 )(1 )

4
N         

  
2

1
(1 )(1 )(1 )

4
N         

 

3

1
(1 )(1 )(1 )

4
N         

  
4

1
(1 )(1 )(1 )

4
N         

 

5

1
(1 )(1 )(1 )

2
N          6

1
(1 )(1 )(1 )

2
N        

7

1
(1 )(1 )(1 )

2
N      

   
8

1
(1 )(1 )(1 )

2
N      

 

17. Derive the shape function for six noded triangular element.    

Consider  a six noded triangular element. It belongs to the serendipity family of elements. It consists of 

six nodes, which are located on the boundary. 

 1 1 12 1N L L   2 2 22 1N L L 
  

 3 3 32 1N L L   

4 1 24N L L
 5 2 34N L L

  6 1 34N L L  

 

Two Marks Question and Answers. 

UNIT-III 
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1. What meant by plane stress analysis? 

Plane stress is defined to be a state of stress in which the normal stress and shear stress directed 
perpendicular to the plane are assumed to be zero. 

2. Define plane strain analysis. (Nov 2011) 

Plane strain is defined to be state of strain normal to the xy plane and the shear strains are assumed to be 
zero. 

3. Write down the stiffness matrix equation for two dimensional CST elements. 

Stiffness matrix 


t 


T 

–Strain displacement -Stress strain matrix-Strain displacement matrix 

4. How do you define two dimensional elements?(AU-NOV/DEC-2010) 

Two dimensional elements are define by three or more nodes in a two dimensional plane. The 

basic element useful for two dimensional analyses is the triangular elements. The elements are 

analyzed in two different axis as x and y axis. The two dimensional elements are used to analyze 

bar element, beam element and the truss element. The structured analysis is carried out by means 

of governing equation and the displacement function with its boundary conditions. 

5. What is CST element? 

Three noded triangular element is known constant strain triangle (CST) which is shown in fig. it 

has six unknown displacement degree of freedom(u1 v1,u2 v2,u3 v3).the element is called CST 

because it has a constant strain throughout it. 

Merits: 

 Calculation of stiffness matrix is easier. 

Demerits: 

 The strain variation within the element is considered as constant. So, the results will be 

poor. 

6. What is LST element?(AU-NOV/DEC-2011) 

Linear strain triangular element: 

Six noded triangular element is known as linear strain triangular (LST). it has twelve unknown 

displacement degree of freedom. The displacement function for the element are quadratic instead 

of linear as in the CST.the nodes are arise in between the nodes in the CST(constant strain 

triangular elemnt. the elements are analysed and are a time consuming one. 

7. What is QST element? 

Ten noded triangular element is known as quadratic strain triangle (QST) it is also called as 

cubic displacement triangle.they are used to analyse the large structure to find the closest value 

and to rectify the errors occur due to analysis. increasing the nodes will always gives us the 

closest or nearest value to the original solution and we may get small differences like tolerance 

value while we Are diving it as many element. 

8. Write a displacement function equation for CST element. 
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Displacement function u=  

Where N1, N2, N3 are shape functions. 

9. Write a stain-displacement matrix for CST element. (AU-NOV/DEC-2013) 

Strain –displacement matrix for CST element is, 

 

Where, A= area of the element 

 q1=Y2-Y3; q2=y3-y1; q3=y1=y2 

r1=x3-x2; r2=x1-x3; r3=x2-x1. 

10. Write down the stiffness equation for two dimensional CST element. 

Stiffness matrix, 

 

     Where, [B]-strain –displacement matrix 

                 [D]-Stress-strain matrix  

             A-area of the element 

t-thickness of the element. 

11. Write down the expression for the shape functions for a constant strain triangularelement.  

(AU-APR/MAY-2010) 

For CST element,  

                            Shape function, N1=  

                                                    N2=  

                                                    N3=  

Where, p1=x2y3-x3y2 

           P2=x3y1-x1y3 

           P3=x1y2-x2y1 

q1=Y2-Y3; q2=y3-y1; q3=y1=y2 

r1=x3-x2; r2=x1-x3; r3=x2-x1. 

12. Differentiate CST andLST element. 

Constant strain triangular element (CST): 
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 CST element is a two dimensional linear element (simplex element). It has only three 

primary nodes at the corners. The strain is constant throughout the element. The polynomial 

function for CST element is u=a1+a2x+a3y; v=a4+a5x+a6y. 

Linear strain triangular element(LST): 

 LST is a two dimensional non-linear element (complex element). It has three primary 

nodes at the corners and three secondary nodes at the midsides. The strain is varying linearly 

inside the element. The polynomial function for the LST element are 

u=a1+a2x+a3y+a4x2+a5y2+a6xy; v=a7+a8x+a9y+a10x2+a11y2+a12xy. 

13. What is meant by two dimensional scalar variable problem? 

Two dimensional scalar variable problem: 

 If the geometry and material properties of any element are described by two spatial 

coordinates then that element is referred as two dimensional finite element and in a problem 

containing that element if the measured parameter is having only one quantity (magnitude only) 

and not having direction of application then it is referred to as two – dimensional scalar variable 

problem.  

14. Specify the applications of two –dimensional problems. 

Applications of two dimensional problems: 

1. The plates under bi-axial loading, to find the load, stress, strain and displacement of 

the plates. 

2. The bending of plates to find the load and moment acting on the beam and the 

displacement function. 

3. The temperature distribution on the surface due to heat transfer to find the 

temperature distribution in the element. 

15. Write short noteon finiteelementmodelingoftwodimensionalelement. 

Finite  element modeling of two dimensional element: 

 Finite element modeling is the discretization of  bigger element of irregular shape into 

many number of calculatable regular shapes of small sized elements. This process is followed in 

one dimensional object or element to reform the tapered rod into cylindrical rod. In two 

dimensional element they are discretised as triangular element to get the regular interpretation of 

the two dimensional element.  

16. Differentiatesimplexandcomplexelements? 

Simplex element: 

 The non-structured problems are elements are discretized in different parameters. If it is 

discretisized  as a triangular element then the element is known to be simplex element. 

Complex element: 

 The complicated structure which are in need or the easy to solve or find the solution some 

of the element are  discretisized as rectangular, quadrilateral, parallelogram such kind of 

elements are known to be complex element. 

17. What are structural and non-structural problems? 

Structural problems: In structural problems, displacement at each nodal point is obtained. By 
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using these displacement solutions, stress and strain in each element can be calculated. 

Non-structural problems: In non-structural problems, temperatures or fluid pressure at each nodal 

point is obtained. By using these values, properties such as heat flow, fluid flow, etc., for each 

element can be calculated. 

 

18. Define shape function. (AU MAY 2008) 

In finite element method, field variables with in an element are generally expressed by the 

following approximate relation: 

Ф(x, y) = N1(x, y) ф1 + N2(x, y) ф2 + N3(x,y) ф3 

N1 N2&N3 are also called shape functions because they are used to express the geometry or shape of 

the element. 

ф1 ф2 &ф3 are the values of the field variable at the nodes and N1 N2&N3 are the interpolation 

functions 

19. If a displacement field in x direction is given by u: 2 x2 +4 y2 + 6xy. Determine the Strain 

in x direction. 

U: 2x2+4y2+6xy 

Strain, e ∂u/∂x = 4x+6y 

20. What are the ways in which a three dimensional problem can be reduced to a two 

dimensional approach. 

Plane stress: one dimensional is too small when compared to other two dimensions. 

Example: Gear thickness is small 

Plane strain: one dimensional is too large when compared to other two dimensions. 

Example: long pipe [length is long compared to diameter] Axisymmetric: geometry 

is symmetry about the axis. 

Example: Cooling tower. 

21. What is the purpose of isoparametric elements? (AU DEC 2007) 

It is difficult to represent the curved boundaries by straight edge finite elements. A large 

number of finite elements may be used to obtain reasonable resemblance between original body 

and the assemblage. In order to overcome this drawback, isoparametric elements are used. i.e., for 

problem involving curved boundaries, a family to elements is known as “isoparametric elements are 

used. 

22.  Give examples for essential (forced or geometric) and non-essential boundary 

conditions. (AU DEC 2010) 

The geometric boundary conditions are displacement, slope, etc. the natural boundary 

conditions are bending moment, shear force, etc. 

23. What are the types of non-linearity? (AU MAY 2010) 

i. Non – linearity in material behavior from point to point. 

ii. Non – linearity in loading- deformation relation. 

iii.Geometric Non – linearity 

iv.Change in boundary condition for different loading 

24. Define frequency of vibration. 
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It is the number of cycles described in one second. Unit is Hz. 

25. Define Damping ratio. 

It is defined as the ratio of actual damping coefficient (C) to the critical damping 

coefficient (Cc). 

Damping ration ε= C / Cc = C / 2mωn 

26. What is meant by longitudinal vibrations? 

When the particles of the shaft or disc moves parallel to the axis of the shaft, then the 

vibrations are known as longitudinal vibrations. 

 

27. What is meant by transverse vibrations? 

When the particles of the shaft or disc move approximately perpendicular to the axis 

of the shaft, then the vibrations are known as transverse vibrations. 

 

28. Define magnification factor. 

The ratio of the maximum displacement of the forced vibration (xmax) to eh static deflection under the 

static force (Xo) is known as magnification factor. 

29. Write down the expression of longitudinal vibration of bar element. 

Free vibration equation for axial vibration of bar element is, 

[K] {u} = ω2[m]{u} 

Where, u – displacement 

[K] – stiffness matrix 

ω– Natural frequency 

[m] – Mass Matrix 

30. Write down the expression of governing equation for free axial vibration of rod. 

The governing equation for free axial vibration of a rod is given by, 

Where, E – young’s modulus, 

A – Cross-sectional area 

ρ- Density 

31. Write down the expression of governing equation for transverse vibration of beam. 

The governing equation for free transverse vibration of a beam 

Where, E – young’s modulus 

I – moment of inertia 

A – Cross-sectional area 

ρ– Density 

32. Write down the expression of transverse vibration of beam element. 

Free vibration equation for transverse vibration of beam element is, 

[K] {u} = ω2[m]{u} 

Where, [K] = stiffness matrix for beam element 

33. What are the types of Eigen value problems? 

There are essentially three groups of method of solution, 

1. Determinant based methods. 

2. Transformation based methods. 
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3. Vector iteration methods. 

34. State the principle of superposition. 

It states that for linear systems, the individual responses to several disturbances or 

driving functions can be superposed on each other to obtain the total response of the system. 

35. Define resonance. 

When the frequency of external force is equal to the natural frequency of a vibrating 

body, the amplitude of vibration becomes excessively large. This phenomenon is known as 

resonance. 

36. Define Dynamic Analysis. 

When the inertia effect due to the mass of the components is also considered in 

addition to the externally applied load, then the analysis is called dynamic analysis. 

37. What are the methods used for solving transient vibration problems? 

There are two methods for solving transient vibration problems. They are: 

a) Mode superposition method 

b) Direct integration method 

38. State the two difference between direct and iterative methods for solving system of 

equations. 

Direct Method 

i) It gives exact value. 

ii) Simple, take less time. 

iii) Determine all the roots at the same time. 

Iterative Method 

i) It gives only approximate solution. 

ii) Time consuming and labourious. 

iii) Determine only one root at the time. 

39. Define linear dependence and independence of vectors. 

Linear dependence : The vectors X1, X2,…Xnare said to be linearly dependent if there exist scalars 

λ1, λ2, . . .λn(not all zero) such that, 

λ1X1 + λ2X2 + . . . + λnXn= 0 

Independence: The vectors X1, X2,…Xnare said to be linearly independent if, 

λ1X1 + λ2X2 + . . . + λnXnis equal to zero such that 

λ1= 0, λ2= . . . . . . = λ2 

40. Define Heat transfer. 

Heat transfer can be defined as the transmission of energy from one region to another region 

due to temperature difference. 

41. Write down the stiffness matrix equation for one dimensional heat conduction element. 

Stiffness matrix, [K] = 

Where, 

A = area of the element, m2 

K = thermal conductivity, W/mK 

l = length of the element, m 

42. Write down the expression of shape function, N and temperature function, T for one 

dimensional heat conduction element. 
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For one dimensional heat conduction element, 

Temperature function, T = N1T1 + N2T2 

 

43. Writedown the finite element equation for one dimensional heat conduction with free end 

convection. 

Finite element equation for one dimensional element heat conduction with free end 

convection is given by,T = N1T1 + N2T2+ N3T3 

44. Define path line. 

A path line is defined as locus of points through which a fluid particle of fixed identity passes 

as it moves in space. 

45. Define streamline. 

A streamline is an imaginary line that connects a series of points in space at a given instant in 

such a manner that all particles falling on the line at that instant have velocities whose vectors are 

tangent to the line. 

46. Define Inviscid flow. 

Ainviscid flow is a frictionless flow characterized by zero viscosity. A viscous flow is one in 

which the fluid is assumed to have non-zero viscosity. 

47. Define two dimensional element. 

Twodimensionalelements 
 

Twodimensional elementsaredefinedby threeormorenodesinatwo dimensional plane(i.e.,x,y 

plane).Thebasicelementusefulfortwodimensional analysisis thetriangular element. 

 
48. Define Plane Stress andPlane Strain 

 

The2delementisextremelyimportantforthePlaneStressanalysisandPlane 
 

Strainanalysis. 
 

Plane Stress Analysis: 
 

Itisdefinedtobeastateofstressinwhichthenormalstress()andshear stress 

()directedperpendicular totheplaneareassumedtobezero. 

Plane StrainAnalysis: 
 

Itisdefinedtobeastateofstraininwhichthenormaltothexyplaneand 

theshearstrainareassumedtobezero 

49. Write the expression for TemperatureEffects 
 

Distributionofthechangeintemperature(ΔT)isknownasstrain.Duetothe 
 



UNIT-III / TWO DIMENSIONAL SCALAR VARIABLE PROBLEMS P a g e  | 64 
 

ME8692 FINITE ELEMENT ANALYSIS   
 

changeintemperaturecanbeconsideredas aninitialstraine0. 
 

σ=D(Bu- e0) 

50. Define variational formulation 

Variational formulation refers to the construction of a functional or a variational principle that is 

equivalent to the governing equations of the problem. It is nothing but the formation I which the 

governing equations are translated into equivalent weighted integral statements that are not 

necessarily equivalent to a variational principle. 

51. Write the Stress-strain relationship matrix [D] for plane strain problem.  

Stress-strain relationship matrix [D] for plane strain problem is, 

 
  



























2

21
00

01

01

211 v
vv

vv

vv

E
D

 
52. Write the Stress-strain relationship matrix [D] for plane stress problem.  

 
 2

1 0

1 0
1

1
0 0

2

v
E

D v
v

v

 
 
 

  
  

 
   

53. Write the Strain displacement relationship matrix [B] for CST element. 

[B]-strain-displacement matrix 

 [B]=

















332211

321

321

000

000

2

1

qrqrqr

rrr

qqq

A
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St.Anne’s College of Engineering & Technology,  

Department of Mechanical Engineering 

  Subject Name  : FINITE ELEMENT ANALYSIS 

  Subject code  :  ME8692 

  Year    :  IIIrd year 

  Semester   :  VIth semester 

 

UNIT IV 

TWO DIMENSIONAL VECTOR VARIABLE PROBLEMS 

Equations of elasticity – Plane stress, plane strain and axisymmetric problems – Body forces and 

temperature effects – Stress calculations - Plate and shell elements. 

 

1. Explain the equation of elasticity in detail. 

Elasticity  

Elasticity is the property of a deformable body due to which the body recovers its original shape uponthe 

removal of forces causing deformation. 

Assumptions made on elasticity: 

 Perfectly elastic 

 Homogeneous 

 Isotropic 

Elasticity equations are used for solving structural mechanical problems. There are four basics sets of 

elasticity equation. They are, 

i. Equilibrium equation 

ii. Compatibility equation 

iii. Strain-displacement relationship equation 

iv. Stress-Strain relationship equation 

Equilibrium equation 

 
Compatibility equation 
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Strain-displacement relationship equation 

 
Stress-Strain relationship equation 

 

 
2. Differentiate plane stress and plane strain. 

PLANE STRESS: - A 3D problem can be reduced to a plane stress condition if it is characterized by 

very small dimensions in one of the normal directions.A thin plate with a cut out subjected to in-plane 

loading.Thin plate subjected to in-plane loading 
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In these cases the stress components z, xz, &yz are zero and it is assumed that no stress component 

varies across the thickness. The state of stress is then specified by x, y and xy only, (functions of x & 

y) and is called plane stress. The stress strain relations are given by 

 
PLANE STRAIN:- 

There exist problems involving very long bodies i.e. a body whose geometry and loading do not vary 

significantly in the longitudinal direction. Such problems are referred to as plane strain problems.  

Some typical examples include a long cylinder such as a tunnel, culvert or buried pipe, a laterally loaded 

retaining wall, a long earth dam, and a loaded semi-infinite half space such as a strip footing on a soil 

mass.In all these problems, the dependant variable can be assumed to be functions of only x & y co-

ordinates provided that we consider a cross-section some distance away from the two ends. 

If we further assume that ‘w’ the displacement component in the ‘z’ direction is zero at every cross-

section, then the non-zero strain components will be 

x = u/x             ; y = v/y                  ; xy =   u/y  +v/x 

and the strain componentsz, xz, yz  will vanish. The dependant stress variables are x, y&xy and the 

constitutive relation for an elastic isotropic material is given by 

 

It is important to note here that only εz = 0 but z 0. 

εz = z/E-  /E;x/E;y 

z -xy 

Axisymmetric Elements Most of the three dimensional problems are symmetry about an axis of 

rotation. Those types of problems are solved by a special two dimensional element called as 

axisymmetric element. 
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Many engineering problems involve solids of revolution (axisymmetric solids) subject to axially 

symmetric loading. 

 Examples are a circular cylinder loaded by uniform internal or external pressure or other axially 

symmetric loading as shown in  

 

 

Because of symmetry the stress components are independent of the angular co-ordinate ‘’ and hence all 

the derivatives with respect to ‘‘ vanish and the components x , r are zero. The strain displacement 

relation are given by 

εr = u/ x               ; ε = u/r; εz = w/z   ;  rz=  u/z        + w/r                           

 
Axisymmetric Formulation 

The displacement vector u is given by 

 

The stress σ is given by 

 

The strain e is given by 
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Temperature Effects  

The thermal force vector is given by 

 

 

3. Problem :- Assuming plane stress conditions evaluate the stiffness matrix for the element shown 

in Fig. Assume E= 2 x 105 N/cm2 and =0.3. u1=0.000, v1=0.0025, u2=0.0012, v2=0.000, u3 

=0.0000 & v3= 0.0025. 

 

1 = y2 – y3     = 0 – 1 = -1   1 = -(x2 – x3)  = 0 – 2 = -2 

2 = y3 – y1     = 1 + 1 =  2   2 = -(x3 – x1)  = 0 – 0 =  0 

3 = y1 – y2    = -1– 0 = -1    3 = -(x1 – x2)  = 2 – 0 =  2 
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4. Derivation of shape function for axisymmetric element. (triangular element)   

Consider an axisymmetric triangular element with nodes 1, 2 and 3 shown in fig.  

 Let the nodal displacement be u1 w1, u2 w2,and u3 w3. 

Displacement, {u}=































3

3

2

2

1

1

w

u

w

u

w

u

 

Since the triangular element has two degree of freedom at each node, it has 6 generalized co-

ordinates. 

Displacement functions, u=a1+a2r+a3z 
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      W=a4+a5r+a6z 

Where, a1, a2, a3, a4, a5, a6 are global or generalized co-ordinates. 

Let    u1= a1+a2r1+a3z1 

   u2= a1+a2r2+a3z2 

   u3= a1+a2r3+a3z3 

write the above equations in matrix form, 

   


















































3

2

1

33

22

11

3

2

1

1

1

1

a

a

a

zr

zr

zr

u

u

u

 

   


















































3

2

1

1

33

22

11

3

2

1

1

1

1

u

u

u

zr

zr

zr

a

a

a

 

Let D=

















33

22

11

1

1

1

zr

zr

zr

 

D-1=
D

C T

 

Find the co-factors of matrix D. 

C11=+
33

22

zr

zr
=(r2z3-r3z2)    C12 =-

3

2

1

1

z

z
=-(z3-z2)=(z2-z3) 

C13=+
3

2

1

1

r

r
=+(r3-r2)     C21=

33

11

zr

zr
=-(r1z3-r3z1)=r3z1-r1z3 

C22=+
3

1

1

1

z

z
=(z3-z1)      C23=-

2

1

1

1

r

r
=-(r3-r1)=(r1-r3) 

C31=+
22

11

zr

zr
=r1z2-r2z1    C32=-

2

1

1

1

z

z
=-(z2-z1)=(z1-z2)    

C33=+
2

1

1

1

r

r
=(r2-r1) 
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C=

     
     
     12211221

31133113

23322332

rrzzzrzr

rrzzzrzr

zrzzzrzr







 

CT=

12211221

31133113

23322332

rrzzzrzr

rrzzzrzr

zrzzzrzr







 

We know that, 

D=

















33

22

11

1

1

1

zr

zr

zr

    D =

















33

22

11

1

1

1

zr

zr

zr

 

D =1  2332 zrzr  -r1  23 zz  +z1  23 rr   

Substitute CT and D values in equation 

D-1=
      z+r- 

1

2312312332 rrzzzrzr 
x

12211221

31133113

23322332

rrzzzrzr

rrzzzrzr

zrzzzrzr







 



















































3

2

1

1

33

22

11

3

2

1

1

1

1

u

u

u

zr

zr

zr

a

a

a

 

=
      z+r- 

1

2312312332 rrzzzrzr 
x

12211221

31133113

23322332

rrzzzrzr

rrzzzrzr

zrzzzrzr







x

















3

2

1

u

u

u

 

Then area of the triangle can be expressed as a function of the r,z co-ordinates of the nodes 1,2 and 3. 

A=
2

1

















33

22

11

1

1

1

zr

zr

zr

 

A=
2

1
[1  2332 zrzr  -r1  23 zz  +z1  23 rr  ] 
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2A=  2332 zrzr  -r1  23 zz  +z1  23 rr   

Substituting equation, 


















3

2

1

a

a

a

A2

1

12211221

31133113

23322332

rrzzzrzr

rrzzzrzr

zrzzzrzr







x

















3

2

1

u

u

u

 


















3

2

1

a

a

a

A2

1

















321

321

321







x

















3

2

1

u

u

u

 

Where, 
1 = 2332 zrzr  ;  

2 = 3113 zrzr  ;    3 =
1221 zrzr   

;121 zz  ;132 zz  ;213 zz   

;231 rr  ;312 rr  ;123 rr   

u=a1+a2r+a3z 

we can write this equation in matrix form, 

u=  
















3

2

1

1

a

a

a

zr  

=  zr1
A2

1

















321

321

321







x

















3

2

1

u

u

u

 

= zr
A

111[
2

1
  zr 222   ]333 zr   x

















3

2

1

u

u

u

 

U=
A

zr

2

111  

A

zr

2

222  

A

zr

2

333  
x

















3

2

1

u

u

u

 

The above equation is in the form of  
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U=  321 NNN
















3

2

1

u

u

u

W= 321 NNN
















3

2

1

w

w

w

 

Where, shape function,N1=
A

zr

2

111  
  N2=

A

zr

2

222  
 N3=

A

zr

2

333  
 

We can write equation as follow 

U=N1u1+N2u2+N3u3 

W=N1w1+N2w2+N3w3 

Assembling the equation in matrix form, 

u(r,z)=
 
 

















































3

3

2

2

1

1

321

321

000

000

,

,

w

u

w

u

w

u

NNN

NNN

zrw

zru
 

5. Derive the strain-displacement matrix [B] for axisymmentric triangular element 

Displacement function for axisymmetric triangular element is given by, 

Displacement function, u(r,z)=
 
 

















































3

3

2

2

1

1

321

321

000

000

,

,

w

u

w

u

w

u

NNN

NNN

zrw

zru

 

We can write,       u =N1u1+N2u2+N3u3 

W=N1w1+N2w2+N3w3 

The strain components are, 

Radial strain, er= 3

3

2

2

1

1 u
r

N
u

r

N
u

r

N

r

u



















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er= 3

3

2

2

1

1 u
r

N
u

r

N
u

r

N














 

circumferential strain, eϴ=
3

3

2

2

1

1 u
r

N
u

r

N
u

r

N
  

longitudinal strain, ez=
z

w




 

  ez= 3

3

2

2

1

1 w
r

N
w

r

N
w

r

N














 

shear strain, 
r

w

z

u
rz









  

rz 3

3

2

2

1

1

3

3

2

2

1

1 w
r

N
w

r

N
w

r

N
u

r

N
u

r

N
u

r

N





























 

Arranging equation in matrix form 


































































































































3

3

2

2

1

1

332211

321

321

321

000

000

000

w

u

w

u

w

u

r

N

z

N

r

N

z

N

r

N

z

N
z

N

z

N

z

N
r

N

r

N

r

N
r

N

r

N

r

N

e

e

e

rz

z

r




 

From equation, we know that 

N1=
A

zr

2

111  
   N2=

A

zr

2

222  
   N3=

A

zr

2

333  
 

Partial differentiation- 
Ar

N

2

11 





   

Ar

N

2

22 





   

Ar

N

2

33 





 











r

z

rAr

N 1

1

11

2

1 













r

z

rAr

N 2

2

22

2

1 




 











r

z

rAr

N 3

3

33

2

1 



 



UNIT-IV / TWO DIMENSIONAL VECTOR VARIABLE PROBLEMS P a g e  | 12 
 

ME8692 FINITE ELEMENT ANALYSIS   
 
 

Ar

N

2

11 





   

Ar

N

2

22 





   

Ar

N

2

33 





 

Substitute the values. 

 























































3

3

2

2

1

1

3

3

32

2

21

1

1

3

3

32

2

21

1

1

321

000

000

000

2

1

w

u

w

u

w

u

r

z

rr

z

rr

z

rA
B



























 

The above equation n the form of  

{e}=[B] {u} 

Where, [B]=strain displacement metrix,                

 

























3

3

32

2

21

1

1

3

3

32

2

21

1

1

321

000

000

000

2

1



























r

z

rr

z

rr

z

rA
B

 

23321 zrzr 
 

31132 zrzr  12213 zrzr 
 

321 zz  132 zz 
 

213 zz 
 

231 rr  312 rr 
 123 rr 

 

6. Derive the stress - strain matrix [D] for axisymmentric triangular element. 

 

By using Hooke’s law, we derived the following stresses equations, 

  
  zyxx veveve

vv

E



 1

211


 

  
  zyxy vevevve

vv

E



 1

211


 

  
  zyxz vevevve

vv

E



 1

211

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   xzxz X
v

X
vv

E
 







 




2

21

211  

Substitute x=r and y=ϴ in the above equations, 

Radial stress,   
  zrr veveve

vv

E



  1

211  

Circumferential stress,   
  zr vevevve

vv

E



  1

211  

Longitudinal stress,   
  zrz vevveve

vv

E



 1

211


 

Shear stress,    xzxz X
v

X
vv

E
 







 




2

21

211  

Arranging the above equations, in matrix form 

  














































































rz

z

r

rz

z

r

e

e

e

v
vvv

vvv

vvv

vv

E











2

21
000

01

01

01

211  

The above equation is in the form of, 

{σ}=[D] {e} 

Where, [D]=stress –strain relationship matrix, 

=   






























2

21
000

01

01

01

211
v

vvv

vvv

vvv

vv

E

 

7. Derive element stiffness matrix for axi-symmetric triangular element. 

Element stiffness matrix [K] for Axi-symmetric triangular element We know that, 

Stiffness matrix, [k] = 
v

T dvBDB ]][[][

 

Where, v---volume=2ΠrA    Coordinates,r = (r1+r2+r3)/3 
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 

























3

3

32

2

21

1

1

3

3

32

2

21

1

1

321

000

000

000

2

1



























r

z

rr

z

rr

z

rA
B

 

23321 zrzr 
  31132 zrzr  12213 zrzr 

 

321 zz 
  132 zz 

 213 zz 
 

231 rr 
  312 rr 

 123 rr 
 

BODY FORCE 
A body force is distributed force acting on every elemental volume of the body 

Unit: Force per unit volume. 

Example: Self weight due to gravity 

f

w

u

w

u

w
u

dAfu r

T



























3

3

2

2

1
1

2  

TEMPERATURE EFFECTS: 

When the free expansion is prevented in the axisymmetric element, the change in temperature causes 

stresses in the element. 

Let ΔT be the raise in temperature and α be the co-efficient of thermal expansion. The thermal force 

vector due to raise in temperature is given by 

{F}t = [B]T [D] {e}t X 2ΠrA 

For axi-symmetric triangular element 

 



























w

u

w

u

w

u

F

F

F

F

F

F

tF

3

3

2

2

1

1

and strain  





























T

T

T

te







0
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STRESS CALCULATION 

Elemental StressesIn Any Axi-Symmetric Problems Are As Follows 

 Radial strain  

 Circumferential strain 

 Longitudinal strain  

 Shear strain 

Radial strain, er= 3

3

2

2

1

1 u
r

N
u

r

N
u

r

N

r

u



















 

er= 3

3

2

2

1

1 u
r

N
u

r

N
u

r

N














 

circumferential strain, eϴ=
3

3

2

2

1

1 u
r

N
u

r

N
u

r

N
  

longitudinal strain, ez=
z

w




  ez= 3

3

2

2

1

1 w
r

N
w

r

N
w

r

N














 

shear strain, 
r

w

z

u
rz











 

 

8. Problem: The nodal co-ordinates for an axisymmetric triangular element are given below: 

r1 = 10 mm  z1  = 10 mm   r2 = 30 mm  z2  = 10 mm 

r3 = 30 mm  z3  = 40 mm   Evaluate [B] matrix for the element  

Given :Co-ordinates:  r1 = 10 mm, z1  = 10 mm; r2 = 30 mm, z2  = 10 mm, r3 = 30 mm, z3  = 40 mm 

To find: Displacement matrix [B]. 

Because of symmetry the stress components are independent of the angular co-ordinate ‘’ and hence all 

the derivatives with respect to ‘‘ vanish and the components x , rare zero. The strain displacement 

relation are given by 
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SOLUTION 

Strain Displacement matrix 

 
2

2312312332

300

)600(
2

1

)]3030()1040(10)1030()4030[(
2

1

)]()()[(
2

1

mmA

rrzzzrzrzr








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Co-ordinates: 

 

 

 

 

 

 

 

Substituting the values in strain displacement matrix 

 

 

9. Differentiate plate and shell elements used in FEA 

PLATE AND SHELL ELEMENTS 

Plate is a flat surface having considerably large dimensions as compared to its thickness. Slabs in civil 

engineering structures, bearing plates under columns, many parts of mechanical components are the 

common examples of plates. In this chapter, we are considering bending of such plates under lateral 

loads. The bending properties of a plate depend greatly on its thickness. Hence in classical theory we 

have the following groups 

20

3

401010

3

333423

3

303010

3

321

321

















z

zzz
z

.r

rrr
r

571.8
334.23

2020
)0(

334.23

200

571.8
334.23

)2020(
)30(

334.23

100

571.8
334.23

200
)30(

334.23

900

3
3

3

2
2

2

1
1

1






















r

z

r

r

z

r

r

z

r
















[D] 
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(i) thin plates with small deflections 

(ii) thin plates with large deflections, and 

(iii) thick plates 

In thin plates with small deflections theory, the following assumption are made 

(a) There is no deformation in the middle plane of the plate. This plane remains neutral during bending. 

(b) Points of the plate lying initially on a normal to the middle surface of the plate remain on the normal 

to the same surface even after bending. 

(c) The normal stresses in the direction transverse to the plate are negligible. 

This theory is satisfactory for plates with ratio of thickness to span exceeding 1/10 and the ratio of 

maximum deflection to thickness less then 1/5 

. Many engineering problems lie in the above category and satisfactory results are obtained by classical 

theories of thin plates. 

Stresses in the middle plane are negligible, if the deflections are small in comparison with thickness. If 

the deflections are large, the in plane stresses developed in the so called neutral surfaces are to be 

considered. This gives rise to theory of thin plates with large deflections, in which geometric non-

linearity is incorporated. 

Displacement models for plate analysis 

Category I: C2-Continuity element i.e. second order continuity elements in which secondderivates of 

‘w’ are also nodal unknowns. 

Category II: C1-Continuity elements i.e. first order continuity elements in which highest order of 

derivatives of ‘w’ is one only. 

Category III: C0-Continuity element i.e. the elements in which only continuity of nodal variables are to 

be ensured.  

Analysis of shell element: 

A shell is a curved surface. Due to their shape they transfer most of the load applied on their surface as 

in plane forces (membrane forces) rather than by flexure. Hence the shells are examples of strength 

through form rather than mass.  

Civil engineers use them as roofs to get large column free areas covered. Cylindrical shells, domes 

hyperbolic parabolic shells etc. are common examples of shell roofs. 

Cooling towers, conical shells are also commonly used shells.  

Mechanical and chemical engineers use shells as pressure vessels and as components of many 

machines. 

Shells may be classified as singly curved or doubly curved. Classification of shell surfaces is attempted 

on the basis of Gauss curvature (product of principle curvature in two perpendicular directions). 
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If the Gauss Curvature is positive, zero, negative the surface will be classified as synclastic, 

developable, anticlastic respectively. Further classification is possible depending upon whether a shell is 

translational surface, a ruled surface or a surface of revolution. 

 

Forces on Shell element 

A typical shell element and various stress resultants acting on it. It may be noted that the sign 

convention is: 

 

(i) Coordinate direction are as per right hand thumb rule 

(ii) A force acting on +ve face in +ve direction or –ve face –ve direction is +ve 

(iii) A +ve force acting on +ve z-direction produces +ve moment, about mid surface 

 

The four different approaches used to generate the shell are 

1. Flat Elements 

2. Curved Elements 

3. Solid Elements 

4. Degenerated Solid Elements. 

 

Flat quadrilateral shell elements have use limitations even in linear analysis,since a mesh that consists of 

strictly flat elements may be impossibly to construct over a doubly-curved shell surface. For large 

deflection nonlinear analysis this deficiency becomes more pronounced. Even if the initial mesh satisfies 

the flat element restriction, the deformations can become so large that warping of the elements can be 

significant. Finding ways of handling warped element geometries is thus of fundamental importance for 

quadrilateral shell elements. 

 

The current approach to deriving the quadrilateral plate bending element utilizes reference lines. 

Hrennikoff [00] first used this concept for plate modeling where the goal was to come up with a beam 

framework useful as a model for bending of flat plates. 

 

Park and Stanley [ 00, 00] used the reference line concept in their development of several plate and shell 

elements based on the ANS formulation. The reference lines were used to find beam-like curvatures; 

these curvatures were then used to find the plate curvatures through various Assumed Natural Strain 

distributions. These plate and shell elements were of Mindlin-Reissner type, and the reference lines were 

treated as Timoshenko beams. The present element is a Kirchhoff type plate and the reference lines are  

thus treated like Euler-Bernoulli (or Hermitian) beams. 

 

10. A hollow cylinder of inside diameter 100mm and outside diameter 140mm is subjected  to 

an internal pressure of 4 N/mm2. As shown in fig. by using two elements on the 15mm 

length shown in fig. calculate the displacements at the inner radius. 

Take E=2x105 N/mm2 and v=0.3. 
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    (16) 

Given: 

 
Inner diameter, de=100mm 

Inner radius, re=50mm 

Outer diameter, De=140mm 

Outer radius, Re=70mm 

Internal pressure, p=4 N/mm2 

Young’s modulus, E=2x105 N/mm2 

Poisson’s ratio=0.3 

To find: nodal displacement: u1,w1,u2,w2,u3,w3,u4,w4. 

Solution: 
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 For element (1) nodal displacements, u1,w1,u2,w2,u3,w3,u4,w4. 

Co-ordinates: 

At node 1:  

  r1=50mm 

  z1=15mm 

At node 2:  

  r2=50mm 

  z2=0mm 

At node 3:  

  r3=70mm 

  z3=15mm 

we know that, r=
3

321 rrr 
=

3

705050 
 

 r=56.66667mm 

 z=
3

321 zzz 
=

3

15015 
 

 z=10mm 

area of the triangle element=1/2xbreath x height=1/2x(70-50)x15 

    A=150mm 

We know that matrix for axisymmetric triangular element (1) 

[K]1=2πrA [B]T [D] [B] 

Stress-strain relationship matrix, [D]=
  






























2

21
000

01

01

01

211
v

vvv

vvv

vvv

vv

E
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[D]=




























2

3.021
000

03.013.03.0

03.03.013.0

0.03.03.01

5.0

102 5

x

x

 






























2

3.021
000

03.013.03.0

03.03.013.0

0.03.03.01

5.0

102 5

x

x

 

We know that, 

Strain-displacement matrix,   

  

























3

3

32

2

21

1

1

3

3

32

2

21

1

1

321

000

000

000

2

1



























r

z

rr

z

rr

z

rA
B

 

   
2

1

23321

750

0701550

mm

XXzrzr








 

  
2

2

31132

300

15501570

mm

XXzrzr








 

   
2

3

12213

750

1550050

mm

XXzrzr








 

mm

zz

15

150

1

321








 

mm

zz

0

1515

2

132








 

mm

zz

15

015

3

213








 

mm

rr

20

5070

1

231








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mm

rr

20

7050

2

312








  

mm

rr

0

5050

3

123









 

mm
X

r

z

r
7647.1

6667.56

1020
)15(

667.56

7501

1

1 





 

mm
X

r

z

r
7647.1

6667.56

1020
0

667.56

3002

2

2 








 
mm

r

z

r
7647.1015

667.56

7503

3

3 








 

Substitute these values. 

 

 





























15

0

0

0

0

20

20

0

15

20

20

0
07647.107647.107647.1

01500015

1502

1

X
B

 

 



























 

15

0

0

0

0

20

20

0

15

20

20

0
07647.107647.107647.1

01500015

10333.3 3XB

 

  















































 

15

0

0

0

0

20

20

0

15

20

20

0
07647.107647.107647.1

01500015

10333.3

2.0

0
000

07.03.03.0

03.07.03.0

0.03.07.0

106153.384 33 XXXDB

  
































3

0

0

0294.5

0

14

4

5294.0

3

14

4

9706.3
07353.562353.162647.3

00294.1165294.69706.9

10282.1 3XDB

 

We know that,  
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 



























 

15

0

0

0

0

20

20

0

15

20

20

0
07647.107647.107647.1

01500015

10333.3 3XB

 

 



































 

15000

007467.115

02000

2007467.10

152000

2007647.115

10333.3 3XB
T

 

    
































































 

15000

007467.115

02000

2007467.10

152000

2007647.115

10333.3

3

0

0

0294.5

0

14

4

5294.0

3

14

4

9706.3
07353.562353.162647.3

00294.1165294.69706.9

10282.1 33 XXDBB
T

    









































4500604560

05621.175588.1001210.105882.1003202.155

0588.10028058.10280412.79

60211.10588.1018.82588.707612.85

45558.100280588.70325412.139

6032.1554118.797611.854118.1397978.223

27333.4DBB
T

 

Substitute these values 

 









































4500604560

05621.175588.1001210.105882.1003202.155

0588.10028058.10280412.79

60211.10588.1018.82588.707612.85

45558.100280588.70325412.139

6032.1554118.797611.854118.1397978.223

27333.4150667.5621 XXXXK 
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 









































4500604560

05621.175588.1001210.105882.1003202.155

0588.10028058.10280412.79

60211.10588.1018.82588.707612.85

45558.100280588.70325412.139

6032.1554118.797611.854118.1397978.223

102246.228 3

1 XXK

 

 









































270.1000693.13270.10693.13

0068.40957.22310.2957.22448.35

0957.22903.63416.2903.63124.18

693.13310.246.2755.18110.16573.19

270.10957.22903.6310.16173.74817.31

693.13448.35124.18573.19817.31076.51

106

1 XK

 

For element:2 

 
Co-ordinates: 

At node 1:  

  r1=50mm 

  z1=0mm 

At node 2:  

  r2=70mm 

  z2=0mm 

At node 3:  

  r3=70mm 

  z3=15mm 

we know that, r=
3

321 rrr 
=

3

707050 
 

 r=63.3333mm 
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 z=
3

321 zzz 
=

3

1500 
 

 z=5mm 

area of the triangle element=1/2xbreath x height=1/2x(70-50)x15 

    A=150mm 

We know that matrix for axisymmetric triangular element (1) 

[K]1=2πrA [B]T [D] [B] 

Stress-strain relationship matrix, [D]=
  






























2

21
000

01

01

01

211
v

vvv

vvv

vvv

vv

E
 

[D]=




























2

3.021
000

03.013.03.0

03.03.013.0

0.03.03.01

52.0

102 5

x

x

 






























2

3.021
000

03.013.03.0

03.03.013.0

0.03.03.01

52.0

102 5

x

x

 

We know that, 

Strain-displacement matrix,   

  

























3

3

32

2

21

1

1

3

3

32

2

21

1

1

321

000

000

000

2

1



























r

z

rr

z

rr

z

rA
B

 

   
2

1

23321

1050

0701570

mm

XXzrzr








 

   
2

2

31132

750

1550070

mm

XXzrzr








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   
2

3

12213

0

070050

mm

XXzrzr








 

mm

zz

15

150

1

321








 

mm

zz

15

015

2

132








 

mm

zz

0

00

3

213








 

mm

rr

0

7070

1

231








 

mm

rr

20

7050

2

312








  

mm

rr

20

5070

3

123









 

mm
r

z

r
5647.10)15(

333.63

10501

1

1 





 

mm
X

r

z

r
5647.1

6336.63

520
15

367.63

7502

2

2 











 
mm

X

r

z

r
579.1

33.63

520
003

3

3 





 

Substitute these values. 

 

 





























15

0

0

0

0

20

20

0

15

20

20

0
07647.107647.107647.1

01500015

1502

1

X
B

 

 



























 

15

0

0

0

0

20

20

0

15

20

20

0
07647.107647.107647.1

01500015

10333.3 3XB
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  















































 

15

0

0

0

0

20

20

0

15

20

20

0
07647.107647.107647.1

01500015

10333.3

2.0

0
000

07.03.03.0

03.07.03.0

0.03.07.0

106153.384 33 XXXDB

  
































3

0

0

0294.5

0

14

4

5294.0

3

14

4

9706.3
07353.562353.162647.3

00294.1165294.69706.9

10282.1 3XDB

 

We know that,  

 



























 

15

0

0

0

0

20

20

0

15

20

20

0
07647.107647.107647.1

01500015

10333.3 3XB

 

 



































 

15000

007467.115

02000

2007467.10

152000

2007647.115

10333.3 3XB
T

 

    
































































 

15000

007467.115

02000

2007467.10

152000

2007647.115

10333.3

3

0

0

0294.5

0

14

4

5294.0

3

14

4

9706.3
07353.562353.162647.3

00294.1165294.69706.9

10282.1 33 XXDBB
T

    









































4500604560

05621.175588.1001210.105882.1003202.155

0588.10028058.10280412.79

60211.10588.1018.82588.707612.85

45558.100280588.70325412.139

6032.1554118.797611.854118.1397978.223

27333.4DBB
T
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Substitute these values 

 









































4500604560

05621.175588.1001210.105882.1003202.155

0588.10028058.10280412.79

60211.10588.1018.82588.707612.85

45558.100280588.70325412.139

6032.1554118.797611.854118.1397978.223

27333.4150667.5621 XXXXK 

 

 









































4500604560

05621.175588.1001210.105882.1003202.155

0588.10028058.10280412.79

60211.10588.1018.82588.707612.85

45558.100280588.70325412.139

6032.1554118.797611.854118.1397978.223

102246.228 3

1 XXK

 

 









































270.1000693.13270.10693.13

0068.40957.22310.2957.22448.35

0957.22903.63416.2903.63124.18

693.13310.246.2755.18110.16573.19

270.10957.22903.6310.16173.74817.31

693.13448.35124.18573.19817.31076.51

106

1 XK

 

 

Two Marks Question and Answers. 

UNIT-III 

1. What is axi symmetric element? 
 

Many three dimensional problem in engineering exhibit symmetry  about an axis of rotation such type of 

problem are solved by special two dimensional element called the axisymmetric element 

2. What are the conditions for a problem to be axisymmetric? (Apr 2010) 

 The condition to be axi-symmetric is as follows 
 

 The problem domain must be symmetric about the axis of revolution  

 All boundary condition must be symmetric about the axis of revolution  

 All loading condition must be symmetric about the axis of revolution 

3. Give the stiffness matrix equation for an axisymmetric triangular element. 
 

Stiffness matrixKB
T 

DB2rA 

A-Area    r-Radius 
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4. What is the purpose of Iso parametric element? 
 

It is difficult to represent the curved boundaries by straight edges finite elements. A large number of finite 

elements may be used to obtain reasonable resemblance between original body and the assemblage. 

5. Define super parametric element? 

 

If the number of nodes used for defining the geometry is more than of nodes used for defining the displacement 

is known as super parametric element. 

6. What is meant by Iso parametric element? 
 

    If the number of nodes used for defining the geometry is same as number of nodes   used for defining the 

displacement is known as Iso parametric element. 

7. Define sub parametric element? 
 

If the number of nodes used for defining the geometry is less than of nodes used for defining the displacement is 

known as sub parametric element 

8. Is beam elementan Iso parametric element? 
 

Beam element is not an Iso parametric element since the geometry and displacement are defined by different 

order interpretation functions. 

9. What is meant by degrees of freedom? 
 

When the force or reaction act at nodal point node is subjected to deformation.The deformation includes 

displacement rotation, and or strains. These are collectively known as degrees of freedom. 

10. State the principles of virtual energy? 
 

A body is in equilibrium if the internal virtual work equals the external virtual work for the every kinematically 

admissible displacement field. 

11. What is homogeneous form? 
 

When the specified values of dependent variables is zero, the boundary condition are said to be homogeneous. 

12. What is non-homogeneous form? 
 

When the specified values of dependent variables are non-zero, the boundary condition said to be non-

homogeneous. 

13. Write down the shape functions for 4 noded rectangular elements using natural  coordinate 

system? 
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14. Write down the stress strain relationship matrix for plane stress conditions? 

 

E-youngs modulus 

v-poisson ratio 

15. Write down Jacobian matrix for 4noded quadrilateral elements? 

 

16. What is Aspect ratio? 
 

It is defined as the ratio of the largest dimension of the element to the smallest dimension. In many cases, as 

the aspect ratio increases the in accuracy of the solution increases. The conclusion of many researches is that the 

aspect ratio should be close as unity as possible. 

17. What is higher order element ? (Nov 2011) 
When the finite element approximation is gradually refining the mesh in comparing the solution then it is called 

higher order elements 

18. What are the four basic sets of elasticity equations? (May 2012) 
Elasticity equations are used for solving structural mechanics problems. These equations must be satisfied if an 

exact solution to a structural mechanics problem is to be obtained. There are four basic sets of elasticity equations. 

They are: 

 Strain- Displacement relationship equations 

 Stress-Strain relationship equations 

 Equilibrium equations 

 Compatibility equations 

19. What are the types of Non-Linearity ?(May 2012) 

 Non-Linearity in material behavior from point to point 

 Non-Linearity in loading deformation relation 

 Geometric non-Linearity 

 Change in boundary condition for different loading 

20. What are higher order elements and why are they preferred? (April 2011) 
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 For any element, if the interpolation polynomial is the order of two or more, that element is known as 

higher order elements 

 It is used to represent the curved boundaries 

 The number of elements are reduced when compared with straight edge elements to model geometry  

21. Give four applications where axi-symmetric elements can be used? (April 2011) 

 Pressure Vessels 

 Rocket Castings 

 Cooling Towers 

 Sub-Marine hulls 

 Belleville springs 

22. What is meant by plane stress analysis? 

Plane stress is defined to be a state of stress in which the normal stress (σ) and shear stress (τ) 

directed perpendicular to the plane are assumed to be zero.plane stress if the stress vector is zero 

across a particular surface. When that situation occurs over an entire element of a structure, as is 

often the case for thin plates, the stress analysis is considerably simplified, as the stress state can 

be represented by a tensor of dimension 2 

23. Define plane strain analysis.(AU-NOV/DEC-2012) 

Plane strain is defined to be a state of strain in which the strain normal to the xy plane and the 

shear strains are assumed to be zero.Plane strain is applicable to rolling, drawingandforging 

where flow in a particular direction is constrained by the geometry of the machinery, e.g. a well-

lubricated die wall. 

24. Write down the stress-strain relationship matrix for plane stress conditions. 

For plane stain problem, stress strain relationship matrix is, 

 

Where E=young’s modulus  

        V=Poisson’s ratio. 

25. Write down the stress-strain relationship matrix for plane strain condition. 

For plane strain problems, stress –strain relationship matrix is, 

 

 






















2

1
0

01

01

1 2 v
v

v

v

v

E
D

 
  

 
 




























 








2

21
00

01

01

211 v

vv

vv

vv

E
D

http://en.wikipedia.org/wiki/Stress_%28mechanics%29
http://en.wikipedia.org/wiki/Stress_analysis
http://en.wikipedia.org/wiki/Tensor
http://www.doitpoms.ac.uk/tlplib/metal-forming-2/rolling.php
http://www.doitpoms.ac.uk/tlplib/metal-forming-2/drawing.php
http://www.doitpoms.ac.uk/tlplib/metal-forming-2/forging.php
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3 noded triangular elements – four noded rectangular elements – higher order elements 

26. What is axisymmetric element?(AU-APR/MAY-2014) 

Many three dimensional problems in engineering exhibit symmetry about an axis of 

rotation. Such types of problems are solved by a special two dimensional element called as 

axisymmetric element. The axisymmetric problemor elements which is formulated from the three 

dimensional element into two dimensional element because of the symmetric axis. The 

symmetric axis which explains the side a is equal to the side a’ which refers us to considerthe 

three dimensional problem into two dimensional one. 

27. What are the conditions for a problem to be axisymmetric? 

Conditions for a problem to be axisymmetric: 

1.The problem domain must be symmetric about the axis of revolution. 

2. All boundary conditions must be symmetric about the axis of revolution.determination of 

boundary condition is important in the axisymmetric probles. 

3. All loading conditions must be symmetric about the axis of revolution. 

28. Write down the displacement equation for an axisymmetric triangular element. 

       Displacement function, u(r,z)=j  

  r,z represents the direction 

  u – represents displacement function in x axis 

  w-represents displacement function in y direction. 

29. Write down the shape function for an axisymmetric triangular element. (AU-APR/MAY-

2013) 

Shape function, N1=  

                N2=  

                           N3=  

Where,  

 

 

 

 

 

 
  


















321

321

000

000

,

,

NNN

NNN

zrw

zru

A

zr

2

111  

A

zr

2

222  

A

zr

2

333  

23321 zrzr 

31132 zrzr 

12213 zrzr 

321 zz 

132 zz 

213 zz 
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30. Give the strain-displacement matrix equation for an axisymmetric triangular element. 

 

Where, co-ordinate, r=  

             Co-ordinate, z=  

Where, , , , , , , -co-ordinates 

31. What are the types of non-linearity? 

Types of non-linearity: 

(i) Non linearity in material  behavior from point to point. 

(ii) Non-linearity loading-deformation reaction. 

(iii) Geometric non-linearity. 

(iv) Change in boundary condition for different loading. 

natural coordinates and coordinate transformations – triangular and quadrilateral 

elements 

32. Write down the stress-strain relationship matrix for an axisymmetric for an axisymmetric 

triangular element.(AU-APR/MAY-2012) 

Stress-strain relationship matrix,  

Where, E,-Young;s modulus 

v-poisson’s ratio. 

33. Give stiffness matrix equation for an axisymmetric triangular element 

Stiffness matrix, 

 

Where, co-ordinate 

 r=  

 A-area of the triangular element matrix. 

231 rr 

312 rr 

123 rr 
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34. What are the ways in which a three dimensional problem can be reduced to a 

twodimension approach. 

Reducing three dimensional element into two dimensional element: 

(i) Plane stress; one dimensional is too small when compared to other two ic 

(ii) dimensions. 

(iii) Plane strain: one dimensional is too large when compared to other two dimensions 

(iv) Axisymmetric: geometry about the axis. 

35. What are natural co-ordinates? (AU-NOV/DEC-2013) 

Natural coordinates: 

 A simple natural coordinate system is a kind of local coordinate system that permits the 

specification of a point within the element by a set of dimensionless numbers whose magnitude 

varies from -1 to +1. The actual finite element say two dimensional element which may be a 

rectangle or quadrilateral or any curved sided and specified any global coordinates system is 

represented in natural coordinate system. 

36. What arethe advantagesofnaturalco-ordinates? 

Advantages of natural coordinates: 

i. Natural coordinate system enable us to formulate shape function easily. 

ii. The shape function for the complicated structure also very easy in the natural 

coordinate system. 

iii. The natural coordinate system helps us to solve the rectangle, quadrilateral, curve 

sided element in a simple way. 

37. What is meant by axisymmetric solid? (AU-NOV/DEC-2012) 

Axisymmetric solid: 

 In some three dimensional solid like cylinder, flywheel, turbine disc the material content 

is symmetric with respect to their axes. The material content is equal in equal distance of 

opposite sides. Hence the stress developed, displacement produced are considered as symmetric. 

Such solids are known as axisymmetric solids. 

 Due to this axisymmetric condition these three dimensional solids can be treated as two 

dimensional solids for analysis. 

38. Specify the machine component related with axisymmetric concept. (AU-NOV/DEC-2011) 

Machine component related with axisymmetric concept: 

 Pressure vessels- the stress deformation due to pressure are analysed here. 

 Pressure cylinders- the cylinders which carry internal or external loads. 

Flywheel – energy storing element which may deformed during torque transmission. 

 Turbine discs- the rotary disc either pressure due to angle or force. 

 Soil mass – structural problem defines base plan of constructions. 

39. Write short note on axisymmetric formulation. 

Axisymmetric formulation: 
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  
 
  

 

40. Brieflydiscussaboutfiniteelementmodelingforaxisymmetricformulation. 

Finite element modeling for axisymmetric formulation: 

 For an axisymmetric element the two dimensional region defined by the revolving area 

can be divided into triangular elements or quadrilateral elements. 

{F} = [K] {u} 

[ ] [ ] [ ][ ]

[ ]  matrix

[B] - strain displacement matrix

[k] - stiffness matrix

T

v

k B D B dv

D stress strain



 



 

{F} – Force   

{u} - displacement 

 

41. What are thenon zero strainandstress componentsofaxisymmetricelement? 

Non zero strainandstress componentsofaxisymmetricelement: 
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Analysis Software. 

 

1. Explain about the natural coordinate system used in FEA. 

NATURAL CO-ORDINATE SYSTEMS 

A Natural Co-ordinate system is a local co-ordinate system that permits the specification of a point 

within an element by a set of dimensionless numbers whose absolute magnitude never exceeds unity 

i.e. A I Dimensional element described by means of its  two end vertices (x1& x2) in Cartesian space is 

represented or mapped on to Natural co-ordinate space by the line whose end vertices 1&2 are given 

by –1 & +1 respectively.  

 
ADVANTAGES OF NATURAL CO-ORDINATE SYSTEMS 

i. It is very convenient in constructing    interpolation functions. 

ii. Integration involving Natural co-ordinate can be easily performed as the limits of the Integration 

is always from –1 to +1. This is in contrast to global co-ordinates where the limits of Integration 

may vary with the length of the element. 

iii. The nodal values of the co-ordinates are convenient number or fractions. 

iv. It is possible to have elements with curved sides. 



UNIT-III / ISOPARAMETRIC FORMULATION  P a g e  | 2 
 

ME8692 FINITE ELEMENT ANALYSIS 

25
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Linear Element:  

We had derived the shape functions for a two noded linear element using Lagrangian 

polynomials. 

 

 
which are the same as that obtained by inverting the generalized co-efficient matrix. 

 

Conversion into natural coordinates  
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I - D Lagrangian  Interpolation functions in Natural Co-ordinates 

 

 
3 Noded Quadratic Element 

 

 

4 Noded Cubic Element: 
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2. Derive Lagrangian Interpolation polynomials for rectangular Element: (Natural Co-ordinates) 

Lagrangian Interpolation polynomials for rectangular Element: (Natural Co-ordinates) 
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Bi-Linear rectangular Element: 

N1 (,) = - N1 () N1 ()    = 1/ 4(1 -  ) (1 –  ) 

N2 (,) = ( - 1) ( - 3)/(2 – 1) (2 – 3) 

= ( + 1) ( -1)/(1 + 1) (-1 –1)        = ¼ (1 + ) (1 – ) 

N3 (,) = ( - 4) ( - 2) / (3 – 4) (3 – 2) 

= ( + 1) ( +1)/(1 + 1) (1 +1)          = ¼ (1 + ) (1 + ) 

N4 (,) = ( - 3) ( - 1)/ (4 – 3) (4 – 1)  

= ( - 1) ( +1)/ (-1 -1) (1 +1)    = ¼ (1 - ) (1 + ) 
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3. Derive shape function for Nine Noded Quadratic Quadrilateral element Nine Noded 

Quadratic Quadrilateral element 

 

 

 

N1(,) = N1 () N2() = ¼ (2-) (2-) 

N2(,) = ½ (1 - 2) (2-) 

N3(,) = ¼ (2 + ) (2-) 

N4(,) = ½ (2  - ) (1 - 2) 

N5(,) =  (1 - 2 ) (1 - 2) 

N6(,) = ½ (2 + ) (1 - 2) 

N7(,) = ¼ (2 - ) (2 + ) 

N8(,) = ½  (1 - 2) (2 + ) 

N9(,) = ¼ (2 + ) (2 + ) 

 

4. Derive Shape functions for Eight noded quadrilateral element : 
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Shape functions for Eight noded quadrilateral element : 

 

The equations to the various lines connecting the various nodes is given by 

Line 1 – 2 – 3      1 +  = 0 

Line 7 – 6 – 5      1 -   = 0 

Line 1 – 8 – 7      1 +  = 0 

Line 3 – 4 – 5      1 -  = 0 

Line 2 – 4            1 -  + = 0 

Line 6 – 8            1 +  - = 0 

Line 4 – 6            1 -  -  = 0 

Line 8 – 2            1 +  +  = 0 

To obtain the shape function N1 ,we identify the equation to those lines not passing through node 1 and 

express N1 as a product of these line equations. 

i.e. lines 5-6-7, 3-4- 5 and 2-8 

N1 = C(1 - ) (1 - ) (1 +  + )N1 (-1, –1) = C(1 + 1) (1 + 1) (1 – 1 –1) = 1     C = - 1/4 

N1(,) = - ¼ (1 - )(1 -  ) (1 +  + ) 

Similarly for N2 the lines are 1-8-7 , 3-4-5 and 5-6-7 

N2 = C(1 - ) (1 + ) (1 -  ) = C(1 - ) (1 - 2) 

N2  (0, -1) = C(1 – 0) (1 + 1) = 1      C = ½ 

N2 (,) = ½ (1 – 2)(1 - ) 

On similar lines we get the other shape functions: N3, N4, N5, N6, N7 and  N8 

N1(,) = - ¼ (1 - )(1 -  ) (1 +  + ) 

N2 (,) = ½ (1 – 2)(1 - ) 
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N3 (,)  = ¼ (1 + ) (1 - ) (-1 +  -) 

N4(,)  = ½ (1 - ) (1 - 2) 

N5 (,)  = ½  (1 + ) (1 - 2) 

N6 (,)  = ¼  (1 -  ) (1 + ) (-1 -   + ) 

N7 (,)  = ½  (1 -  2) (1 + ) 

N8 (,)  = ¼ (1 + ) (1 + ) (-1 +  + ) 

5. Derive Shape functions for CST  and LST element 

Shape functions for CST element 

 

N1(,) = c (1 -  - )      N2(,) = c ()  

N1(0,0) = c (1)=1            N2(1,0) = c (1) =1 

c=1                             c=1  

N1(,) = (1 -  - )         N2(,) =  

Similarly N3=  

Shape functions for LST element 
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6. What are isoparametric elements and explain its types. 

ISOPARAMETRIC  ELEMENTS 

The element is said to be isoparametric when the shape functions defining the displacement pattern and 

geometry are the same and are of the same order. 

Isoparametric elements are versatile and are used in two and three dimensional elasticity problems. 

r 

     x =          xi Li () 
                       i = 1 

For a linear transformation r = 2 

  

 x = x1 N1 () + x2 N2 () 

 

For example an element whose x co-ordinates are given by x1 = 3 & x2 = 7 

 

or  6 = 3 – 3 + 7 + 7  or  4 = -4      or   = -1  

ie the point xi = 3 transforms to  = -1 in natural co-ordinate space 

 

14 = 3  - 3 + 7 + 7 

4 = 4  or = 1 













)1(4

4

)1()(4

)()2/1(2

)2/1()(2

)221()1(
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1






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The point  x2 = 7 in Cartesian space gets transformed to 2 = +1 in Natural co-ordinate space.  So the 

transformation  

 
Similarly we have the approximation of the field variable in terms of shape functions expressed 

as 

 

Here ‘r’ - the number of nodes used for geometric transformation  

‘s’ - the number of nodes used for approximation of field variable. 

 In general the polynomial used for geometric transformation need not be of the same order as that used 

for the field variable approximation. In other words two sets of nodes exists for the same region or 

element. 

In other words two sets of nodes exists for the same region or element. 

 One set of nodes for co-ordinate transformation from Cartesian space to natural co-ordinate 

space 

 One set of nodes for approximating the variation of the field variable over the element. 

Depending upon the relationship between these two polynomials elements are classified into 

three categories as 

I. sub parametric elements     r < s 

II. iso-paramatric elements      r = s 

III. super-parametric elements    r > s 
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Jacobian of Transformation  

Among the 3 cases given above Isoparametric are more commonly used due to their advantages which 

include the following: 

i) Quadrilateral elements in (x,y) coordinates with curved boundaries get transformed to a rectangle of (2 

x 2) units in (, ) co-ordinates 

ii) Numerical integration is more easily performed as limits of integration vary from –1 to +1 for all 

elements.  

We have seen that determination of the stiffness matrix requires the computation of derivative of shape 

functions with respect to ‘x’. However as the shape functions (Interpolation function) are expressed in 

terms of & co-ordinates (natural co-ordinates) we use the chain rule. 

 

Here J = dx/ d is the ‘Jacobian’ of transformations from Cartesian space to natural co-ordinate 

space. It can be considered as the scale factor between the two co-ordinate systems. 

Jacobian of transformation for 2 Noded Linear Element 

For a 2 Noded element the shape functions are given by   

N1 () =  (1 - )/2 

N2 () = (1+)/2 

Now x = N1x1 + N2 x2 

           = (1 - )/2  x1 + (1 +) x2  

dx/d = J  = (-1 x1 )2+  x2/2   

           = (x2 – x1)/2  =  L/2                    

Here (x2 – x1) represents the length of the element.  So the Jacobian of transformation for a 2 noded 

element is given by L/2 

3- Noded Quadratic element:- 
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Stiffness Matrix for a 2 Noded Axial Element 

 

 
 

7. Explain numerical integration and its application to plane stress problems. 

NUMERICAL INTEGRATION AND APPLICATION TO PLANE STRESS PROBLEMS 

In the isoparametric formulation of higher order elements we see that the strain-displacement matrix [B] 

is given by 
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Here J = ((-1 + 2)/2      -2       (1 + 2)/2)                                    

Therefore Matrix [B] is a function of , with polynomials in  in its denominator because of the 1/J 

factor. Hence the equation (A) cannot be integrated to give on the solution. Hence we resort to 

numerical integration. 

So evaluation of integrals of the formb  F(x) dx becomes difficult or impossible in cases where the 

integrand F has functions of x in both numerator denominator. The basic idea behind whatevernumerical 

integration technique we may employ is that of obtaining a function P(x) which is both a suitable 

approximation of F(x) and simple enough to integrate. 

Referring to Fig the variation of F(x) is shown. Evaluation of the Integral  dx will yield the area under 

the F(x) curve between points x1 (= a) & x2 (= b). 

 

“Trapezoidal rule”,  
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Trapezoidal Rule               Simpsons Rule 

 

 

 

 

 

 

8. Explain the Gauss Quadrature in detail. 

Gauss Quadrature:-Amongst the several schemes available for evaluating the area under the 

curve F(x) between two points the gauss quadrature method has proved to be most useful for 

isoparametric elements. As in isoparametric formulation, the limits of the integral are always from –1 to 

+1, the problem in gauss integration is to evaluate the integral  

               +1 

      I =       F() d. 

               -1 

The simplest and probably the crudest way to evaluate the integral is to sample or evaluate F() at the 

midpoint of the interval and to multiply this by the length of the element which is ‘2’ [because 1 = -1 

&2 = 1 &(2 – 1) = 2] 

 F(x) dx = I = 2 fi 

This result will be exact only if the actual function happens to be a straight line. 

 

One point formula 

We can extend the same to take two sampling points or three etc.Generalization of this relation gives 

)........(2)........(4(
3

)( 64273180 yyyyyyyy
h

dxxF

b

a


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Here wi is called the ‘weight’ associated with the ith point and n is the number of sampling points. The 

Table (1) gives the sampling points and the associated weights (wi) for Gauss quadrature. 

 

Thus to approximate the integral I, the function f() is evaluated at each of several locations i, and each 

f(i) is multiplied by the approximating weights w. The summation of these products gives the value of 

the integral. The sampling points are generally located symmetrically with respect to the center of the 

interval. Symmetrically paired points have the same weight wi. 

9. Problem: As an example consider the evaluation of the Integral I using 2 sampling points 

i.e. n = 2. 

I (1.0) ( f at  = - 0.577350269189626) + (1.0) (f  at  = + 0.577350269189626) 

 

In general if we know that the integral to be evaluated  is of order p then the number of sampling points 

required n is given by the relation 

            2n-1 = p  

The calculated number of sampling points can be rounded off to the nearest integer 
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10. Problem: Evaluate the integral                                 and compare with exact solution. 

Given: Integral, 

 

To Find: The integral I by using Gauss quadrature. 

Solution:We know that , the given integrand is a polynomial of order 2. 

So, 2n-1 = 2  2n =3  n = 1.5  2 

For two point Gaussian quadrature, 
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Exact Solution: 

 

 

 

 

11. Problem: Using Gauss Quadrature evaluate the following integral using 1 2 and 3 point 

Integration.                                                                                                 

 

 

 

12. Derive the element stiffness matrix for four noded isoparametric  quadrilateral 

element..(AU-APR/MAY-2011)       (16) 

 
The displacement function u for parent rectangular element is given by 
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1

1

2

1 2 3 4 2

1 2 3 4 3

3

4

4

0 0 0 0

0 0 0 0

u

v

u

N N N N vu
u

N N N N uv

v

u

v

 
 
 
 
 

    
     
     

 
 
 
 
 

 

The displacement function u for isoparametricquadrilateral  element is given by 

 

1

1

2

1 2 3 4 2

1 2 3 4 3

3

4

4

0 0 0 0

0 0 0 0

x

y

x

N N N N yx
u

N N N N xy

y

x

y

 
 
 
 
 

    
     
     

 
 
 
 
 

 

Let 

( , )

[ ( , ), ( , )]

f f x y

f f x y   




 

The relationship between natural coordinates and global coordinates  can be calculated  by using   

chain rule of partial differentiation. 

* *
f f x f y

x y  

    
 

    
 

* *
f f x f y

x y  

    
 

    
 

Arranging the above equation in matrix form, 

 

ff x y

x

ff x y

y

  

  

       
          

    
      

            
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 

ff

x
J

ff

y





   
      

   


   
      

 

Where J is the Jacobian matrix. 

 

13. For the isoparametric quadrilateral element shown in fig determine the local coordinates of 

the point P which has Cartesian coordinates (7, 4).  (16)     

 
Given: 

 
Cartesian coordinates of  point P 

X=7; y = 4 

Cartesian coordinates of point 1, 2, 3 and 4 

X1=3;y1=1 

X2=6;y2=1 

X3=8;y3=6 

X4=2;y4=5 

To find: 

Local coordinates of point P i.e ε and η 

Solution: 
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We know that 

Shape function for quadrilateral element is 

1

1
(1 )(1 )

4
N      

2

1
(1 )(1 )

4
N      

3

1
(1 )(1 )

4
N      

4

1
(1 )(1 )

4
N      

Cartesian coordinates of point P(x,y) 

X= N1x1+N2x2+N3x3+N4x4-------------- 1 

Y=N1y1+N2y2+N3y3+N4y4---------------2 

Substitute N1, N2, N3 and N4 value in eqn  1 

1 1 2 2 3 3 4 4x N x N x N x N x     

1
7 [(1 )(1 )*3 (1 )(1 )*6 (1 )(1 )*8 (1 )(1 )*2]

4
                    

28 [(1 )3 (1 )6 (1 )8 (1 )2]                            

28 3 3 3 3 6 6 6 6 8 8 8 8 2 2 2 2                            

28 19 9 3       

9 3 9     -------3 

Substitute N1, N2, N3 and N4 value in eqn  2 

1 1 2 2 3 3 4 4y N y N y N y N y     

1
4 [(1 )(1 )*1 (1 )(1 )*1 (1 )(1 )*6 (1 )(1 )*5]

4
                    

16 [(1 )1 (1 )1 (1 )6 (1 )5]                            

16 1 1 6 6 6 6 5 5 5 5                            

16 13 9       

9 13     --------4 

Solving equation 3 and 4 

η=0.210587 

ε= 0.912545 

14. Problem:Evaluate the Cartesian co-ordinate of the point P which has local co-ordinates  = 

0.6 and  = 0.8 as shown in the Figure. 
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Given: Natural co-ordinates of point P 

  = 0.6    = 0.8 

Cartesian co-ordinates of point 1,2,3 and 4 

 

 

 

To Find: The Cartesian co-ordinates of the point P (x,y) 

Solution:Shape functions for quadrilateral element are, 

 

 

 

 

Substituting the values 

 

 

 

 

 

 

 

5;4

8;6

4;9

2;3

44

33

22

11









yx

yx

yx

yx

)1()1(
4

1

)1()1(
4

1

)1()1(
4

1

)1()1(
4

1

4

3

2

1

















N

N

N

N

18.0)8.01()6.01(
4

1
)8.0,6.0(

72.0)8.01()6.01(
4

1
)8.0,6.0(

08.0)8.01()6.01(
4

1
)8.0,6.0(

02.0)8.01()6.01(
4

1
)8.0,6.0(

4

3

2

1









N

N

N

N
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15.

 A four noded rectangular element is shown in fig. determine 

 1. Jacobian matrix,         (4) 

 2. Strain – displacement matrix,    (8) 

 3. Element stresses.       (4) 

Take E = 2*105N/mm2, v=0.25, u=[0,0,0.003,0.004,0.006,0.004,0,0]T; ξ=0; η=0. Assume 

plane  stress condition.(AU-APR/MAY-2012) 

 

Given: 

 

Cartesian coordinates  of points 1, 2, 3 and 4. 

x1=0;y1=0 

x2=2;y2=0 

x3=2;y3=1 

x4=0;y4=1 

 )02.7,82.5(),(

02.7

)5(18.0)8(72.0)4(08.0)2(02.0

,

82.5

)4(18.0)6(72.0)9(08.0)3(02.0

,

44332211

44332211















yxareordinatesCo

y

yNyNyNyNyordinateCo

x

xNxNxNxNxordinateCo
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Young’s modulus, E = 2*105N/mm2 

Poisson’s ratio v =0.25 

0

0

0.003

0.004
,

0.006

0.004

0

0

displacemrnt u

 
 
 
 
 
 

  
 
 
 
 
 
 

 

Natural coordinates, ξ=0; η=0. 

To find 

1.

 Jacobian matrix 

2.

 Strain-Displacement matrix    [B] 

3.

 Element stress, σ. 

Solution: 

 Jacobian matrix for quadrilateral element is given by 

 
  11 12

21 22

J J
J

J J

 
  
   

 11 1 2 3 4

1
(1 ) (1 ) (1 ) (1 )

4
J x x x x            ----------1 

 12 1 2 3 4

1
(1 ) (1 ) (1 ) (1 )

4
J y y y y            -----------2 

 21 1 2 3 4

1
(1 ) (1 ) (1 ) (1 )

4
J x x x x            ------------3 

 22 1 2 3 4

1
(1 ) (1 ) (1 ) (1 )

4
J y y y y            ----------4 

Substitute x1, x2, x3, x4, y1, y2, y3, y4, ξ and η value in the above equation 1, 2, 3 and 4 

 11 1 2 3 4

1
(1 ) (1 ) (1 ) (1 )

4
J x x x x               11

1
0 2 2 0

4
J       11 1J   
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 12 1 2 3 4

1
(1 ) (1 ) (1 ) (1 )

4
J y y y y               12

1
0 0 1 1

4
J       

12 0J   

 21 1 2 3 4

1
(1 ) (1 ) (1 ) (1 )

4
J x x x x               21

1
0 2 2 0

4
J       21 0J   

 22 1 2 3 4

1
(1 ) (1 ) (1 ) (1 )

4
J y y y y           

  

 22

1
0 0 1 1

4
J     

 

22 0.5J 
 

  11 12

21 22

J J
J

J J

 
  
    

 
1 0

0 0.5
J

 
  
 

  

  1*0.5 0J  
 

  0.5J 
 

We know that strain displacement matrix for quadrilateral element is, 

 
22 12

21 11

21 11 22 12

(1 ) 0 (1 ) 0 (1 ) 0 (1 ) 0
0 0

(1 ) 0 (1 ) 0 (1 ) 0 (1 ) 01 1
0 0 *

0 (1 ) 0 (1 ) 0 (1 ) 0 (1 )4

0 (1 ) 0 (1 ) 0 (1 ) 0 (1 )

J J

B J J
J

J J J J

   

   

   

   

      
   

         
        
     

      

Substitute J11, J12, J21, J22, η and ξ value in the above equation. 

 

1 0 1 0 1 0 1 0
0.5 0 0 0

1 0 1 0 1 0 1 01 1
0 0 0 1 *

0 1 0 1 0 1 0 10.5 4
0 1 0.5 0

0 1 0 1 0 1 0 1

B

  
   

    
    
    

  

 

 

0.5 0 0.5 0 0.5 0 0.5 0
1

0 1 0 1 0 1 0 1
0.5*4

1 0.5 1 0.5 1 0.5 1 0.5

B

  
 

  
 
     

 

 

1 0 1 0 1 0 1 0
0.5

0 2 0 2 0 2 0 2
0.5*4

2 1 2 1 2 1 2 1

B

  
 

  
 
     

 

 

1 0 1 0 1 0 1 0

0.25 0 2 0 2 0 2 0 2

2 1 2 1 2 1 2 1

B

  
 

  
 
     

 

We know that  

Element stress, σ = [D] [B] {u} 

For plane stress condition, 
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Stress strain relationship matrix,   2

1 0

1 0
1

1
0 0

2

E
D








 
 
 

  


 
 
 

 

 
5

2

1 0.25 0
2*10

0.25 1 0
1 (0.25)

1 0.25
0 0

2

D

 
 
 

  


 
 
    

  3

1 0.25 0

213.3*10 0.25 1 0

0 0 0.375

D

 
 


 
    

  3

4 1 0

213*10 *0.25 1 4 0

0 0 1.5

D

 
 


 
      

  3

4 1 0

53.33*10 1 4 0

0 0 1.5

D

 
 


 
    

Substitute [D], [B] and {u} value in the element stress relation, 

  3

0

0

0.003
4 1 0 1 0 1 0 1 0 1 0

0.004
53.33*10 1 4 0 *0.25 0 2 0 2 0 2 0 2

0.006
0 0 1.5 2 1 2 1 2 1 2 1

0.004

0

0



 
 
 
 

      
    

       
            
 
 
 
 

 

  3

0 0 (4*0.003) ( 2*0.004) (4*0.006) (2*0.004) 0 0

13.33*10 0 0 (1*0.003) ( 8*0.004) (1*0.006) (8*0.004) 0 0

0 0 ( 3*0.003) (1.5*0.004) (3*0.006) (1.5*0.004) 0 0



        
 

        
 
         

 

  3

0.036

13.33*10 0.009

0.021



 
 

  
 
      

  2

480

120 /

280

N m

 
 

  
 
   

 

16. Derive the shape function for eight noded triangular element.(AU-APR/MAY-2014) 
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Consider  a eight noded rectangular element. It belongs to the serendipity family of elements. It 

consists of eight nodes, which are located on the boundary. 

   (16) 

 We know that shape function N1 = 1 at node 1 and 0 at all other nodes. The natural 

coordinates of the nodes are indicated in the figure. By following the procedure the shape 

function can be obtained as, 

At node 1: 

 Coordinates ξ = -1, η = -1 

 Shape function N1 = 1 at node 1 

   N1 = 0 at all other nodes 

 N1 has to be in the form of 1 (1 )(1 )(1 )N C          

 Where C – constant 

 Substitute ξ = -1, η = -1in equation. 

  1 (1 )(1 )(1 )N C          

  1 4C   

  C = -1/4 

Substitute C value in the above equation 

1 (1 )(1 )(1 )N C          

1

1
(1 )(1 )(1 )

4
N           

At node 2: 

 Coordinates ξ = 1, η = -1 

 Shape function N2 = 1 at node 2 

   N2 = 0 at all other nodes 

 N2 has to be in the form of 2 (1 )(1 )(1 )N C          

 Substitute ξ = 1, η = -1in equation. 

  2 (1 )(1 )(1 )N C          

  1 4C   
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  C = -1/4 

Substitute C value in the above equation 

2 (1 )(1 )(1 )N C          

2

1
(1 )(1 )(1 )

4
N           

 

At node 3: 

 Coordinates ξ = 1, η = 1 

 Shape function N3 = 1 at node 3 

   N3 = 0 at all other nodes 

 N3 has to be in the form of 
3 (1 )(1 )(1 )N C          

 Substitute ξ = 1, η = 1in equation. 

  
3 (1 )(1 )(1 )N C          

  1 4C   

  C = -1/4 

Substitute C value in the above equation 

3 (1 )(1 )(1 )N C          

3

1
(1 )(1 )(1 )

4
N           

At node 4: 

 Coordinates ξ = -1, η = 1  

Shape function N4 = 1 at node 4 

   N4 = 0 at all other nodes 

 N4 has to be in the form of 4 (1 )(1 )(1 )N C          

 Substitute ξ = -1, η = 1in equation. 

4 (1 )(1 )(1 )N C          

  
1

1
4

C   

  C = -1/4 

Substitute C value in the above equation 

4 (1 )(1 )(1 )N C          

4

1
(1 )(1 )(1 )

4
N         

 
Now we define N5, N6, N7 and N8 

At node 5: 

 Coordinates ξ =0, η = -1 

 Shape function N5 = 1 at node 5 

   N5 = 0 at all other nodes 
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 N5 has to be in the form of 
5 (1 )(1 )(1 )N C        

 Where C – constant 

 Substitute ξ = -1, η = -1in equation. 

  
5 (1 )(1 )(1 )N C        

1 2C  

  C = 1/2 

Substitute C value in the above equation 

5 (1 )(1 )(1 )N C        

5

1
(1 )(1 )(1 )

2
N        

At node 6: 

 Coordinates ξ = 1, η = -1 

 Shape function N6 = 1 at node 6 

   N6 = 0 at all other nodes 

 N6 has to be in the form of 6 (1 )(1 )(1 )N C        

 Substitute ξ = 1, η = 0 in equation. 

  6 (1 )(1 )(1 )N C        

1 2C  

  C = 1/2 

Substitute C value in the above equation 

6 (1 )(1 )(1 )N C        

6

1
(1 )(1 )(1 )

2
N        

 

At node 7: 

 Coordinates ξ = 1, η = 1 

 Shape function N7 = 1 at node 7 

   N7 = 0 at all other nodes 

 N7 has to be in the form of 7 (1 )(1 )(1 )N C        

 Substitute ξ = 0, η = 1in equation. 

  7 (1 )(1 )(1 )N C        

1 2C  

  C = 1/2 

Substitute C value in the above equation 

7 (1 )(1 )(1 )N C        

7

1
(1 )(1 )(1 )

2
N        

At node 8: 
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 Coordinates ξ = -1, η = 1  

Shape function N8 = 1 at node 8 

   N8 = 0 at all other nodes 

 N8 has to be in the form of 8 (1 )(1 )(1 )N C        

 Substitute ξ = -1, η = 0 in equation. 

8 (1 )(1 )(1 )N C        

  1 2C  

  C = 1/2 

Substitute C value in the above equation 

8 (1 )(1 )(1 )N C        

8

1
(1 )(1 )(1 )

2
N      

 
 

17. Derive the shape function for six noded triangular element.   (16) 

 

Consider a six noded triangular element. It belongs to the serendipity family of elements. It consists of 

six nodes, which are located on the boundary. 

We know that shape function N1 = 1 at node 1 and 0 at all other nodes. The natural coordinates of the 

nodes are indicated in the figure. By following the procedure the shape function can be obtained as, 

At node 1: Coordinates L1 = 1, L2 = 0, L3 = 0 

 Shape function N1 = 1 at node 1 

   N1 = 0 at all other nodes 

 N1 has to be in the form of 1 1 1

1

2
N CL L

 
  

 
 

 Where C – constant 

 Substitute L1 =1 in equation. 

  1 1 1

1

2
N CL L

 
  

 
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1

1
2

C  

  C = 2 

Substitute C value in the above equation 

1 1 1

1

2
N CL L

 
  

 
 

1 1 1

1
2

2
N L L

 
  

 
 

 1 1 12 1N L L   

At node 2: 

 Coordinates L1 =0, L2 = 1, L3 = 0 

 Shape function N2 = 1 at node 2 

   N2 = 0 at all other nodes 

 N2 has to be in the form of 2 2 2

1

2
N CL L

 
  

 
 

 Substitute L2 =1 in equation. 

  2 2 2

1

2
N CL L

 
  

 
 

`  
1

1
2

C  

  C = 2 

Substitute C value in the above equation 

2 2 2

1

2
N CL L

 
  

 
 

2 2 2

1
2

2
N L L

 
  

 
 

 2 2 22 1N L L   

At node 3: 

 Coordinates L1 =0, L2 = 0, L3 = 1 

 Shape function N3 = 1 at node 3 

   N3 = 0 at all other nodes 

 N3 has to be in the form of 3 3 3

1

2
N CL L

 
  

 
 

 Substitute L2 =1 in equation. 

  3 3 3

1

2
N CL L

 
  

 
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1

1
2

C  

  C = 2 

Substitute C value in the above equation 

3 3 3

1

2
N CL L

 
  

 
 

3 3 3

1
2

2
N L L

 
  

 
 

 3 3 32 1N L L   

Now we define N4, N5 and N6 at the mid -    points 

At node 4: 

 Coordinates L1 =1/2, L2 = 1/2, L3 = 0 

 Shape function N4 = 1 at node 4 

   N4 = 0 at all other nodes 

 N4 has to be in the form of 4 1 2N CL L  

 Substitute L1 =1/2, L2 = 1/2 in equation. 

4 1 2N CL L  

  4

1 1
* *

2 2
N C  

  
1

1
4

C  

  C = 4 

Substitute C value in the above equation 

4 1 2N CL L  

4 1 24N L L  

At node 5: 

 Coordinates L1 =0, L2 = 1/2, L3 = 1/2 

 Shape function N5 = 1 at node 5 

   N5 = 0 at all other nodes 

 N5 has to be in the form of 5 2 3N CL L  

 Substitute L2 =1/2, L3 = 1/2 in equation. 

5 2 3N CL L  

  5

1 1
* *

2 2
N C  

  
1

1
4

C  

  C = 4 

Substitute C value in the above equation 
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5 2 3N CL L  

5 2 34N L L  

At node 6: 

 Coordinates L1 =1/2, L2 = 0, L3 = 1/2 

 Shape function N6 = 1 at node 6 

   N6 = 0 at all other nodes 

 N6 has to be in the form of 
6 1 3N CL L  

 Substitute L2 =1/2, L3 = 1/2 in equation. 

6 1 3N CL L  

  
6

1 1
* *

2 2
N C  

  
1

1
4

C  

  C = 4 

Substitute C value in the above equation 

6 1 3N CL L  

6 1 34N L L  

18. Evaluate  dxxx




1

1

24 by applying 3 point Gaussian quadrature.  (16) 

Given; 

 Integral, I=  dxxx




1

1

24  

  f(x)=x4+x2 

To find: evaluate the integral by using Gaussian quadrature with three gauss points. 

Solution: we know that, for three point Gaussian quadrature. 

X1= 774596669.0
5

3
  

X2=0 

X3= 774596669.0
5

3
  

W1= 5555.0
9

5
  

W2= 888888.0
9

8
  

W3= 5555.0
9

5
  

We know that,     f(x)= x4+x2 
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f(x)=(x1)
4+(x1)

2 

   

f(x1)=0.96 

W1 f(x1)=0.5555x0.96 

W1 f(x1)=0.5333 ……..(1) 

f(x2)= x4+x2=(0)4+(0)2 

f(x2)=0 

W2 f(x2)=0.8888x0 

W2 f(x2)=0 ………..(2) 

f(x3)= x3
4+x3

2 

=(-0.774596669)4+(-0.7774596669)2 

f(x3)=0.96 

W3 f(x3)=0.55555x0.96 

W3 f(x3)=0.533……(3) 

Adding equation (1), (2) and (3), 

W1f(x1)+w2f(x2)+w3f(x3)=0.5333+0+0.5333=1.0666 

Result:    dxxx




1

1

24 =1.06666 

Verification  dxxx




1

1

24 =

1

1

3
1

1

5

35

























 xx
 

        =          3355
11

3

1
11

5

1
  

         =     0666.111
3

1
11

5

1
  

19. Integrate the function f(r)=1+r+r2+r3 between the limits -1to+1 using,  

(i) Exact method.      (8) 

(ii) Gauss integration method and compare the two results.(8) 

(AU-APR/MAY-2014) 

     Given: function, f(r)= 1+r+r2+r3 

To find: evaluate the integral using gauss integration method and compare with method. 

Solution: we know that, the given integral is a polynomial of order 3. 

So, 2n-1=3 
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2n=4 

N=2 

we should use two sampling points,  

for to point Gaussian quadrature, 

r1=+
3

1
=0.577350269

 

r2=- 3

1
=-0.577350269 

    w1=1 

w2=1 

f(r)= 1+r+r2+r3 

f(r1)= 1+r1+r1
2+r1

3 

1+0.577350269+(0.5777350269)2+(0.577350269)3 

f(r1)=2.1031336 

w1 f(r1)=1x2.1031336 

w1 f(r1)=2.1031336  (1) 

f(r2)= 1+r2+r2
2+r2

3 

1+0.577350269+(-0.5777350269)2+(-0.577350269)3 

f(r2)=0.5635329 

w2 f(r2)=1x0.5635329 

W2 f(r2)=0.5635329    (2) 

Applying (1) and (2), 

w1 f(r1)+ w2 f(r2)=2.1031336+0.5635326=2.66666 

 
1

1

1

1

432
32

432
1



 









rrr
rdrrrr  

   =        11

41

1

31

1

21

1
4

1

3

1

2

1
  rrrr  

   =                 443322
11

4

1
11

3

1
11

2

1
)1(1   
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   =2+ )0(
4

1
)11(

3

1
)0(

2

1
  

   




1

1

32 6666.21 drrrr  

Result: 1.  




1

1

32 6666.21 drrrr  (by gauss integration) 

          2.  




1

1

32 6666.21 drrrr (by exact method)                                     

20. Explain some matrix solution technique in detail. 

MATRIX SOLUTION TECHNIQUES  

 

SOLUTIONS TECHNIQUES TO DYNAMIC PROBLEMS 

DYNAMIC EQUATIONS OF MOTION 

In dynamic problems the displacements, velocities, strains, stresses, and loads are all timedependent. 

The procedure involved in deriving the finite element equations of a dynamic problem can be stated by 

the following steps: 

Step 1: Idealize the body into E finite elements. 
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Step 2: Assume the displacement model of element e  

Step 3: Derive the element characteristic (stiffness and mass) matrices and characteristic (load) vector. 

Step 4:Assemble the element matrices and vectors and derive the overall system equations of motion. 

Steps 5 and 6: Solve the equations of motion by applying the boundary and initial conditions. 

Once the time history of nodal displacements, Q(t), is known, the time histories of stresses and strains in 

the elements can be found as in the case of static problems. Special space-time finite elements have also 

been developed for the solution of dynamic solid and structural mechanics problems. 

CONSISTENT AND LUMPED MASS MATRICES 

The mass matrix is called "consistent" mass matrix of the element. It is called consistent because the 

same displacement model that is used for deriving the element stiffness matrix is used for the derivation 

of mass matrix. It is of interest to note that several dynamic problems have been and are being solved 

with simpler forms of mass matrices. The simplest form of mass matrix that can be used is that obtained 

by placing point (concentrated) masses mat node points i in the directions of the assumed displacement 

degrees of freedom.  

The consistent mass matrix of the element is given by 

 

The concentrated masses refer to translational and rotational inertia of the element and are calculated by 

assuming that the material within the mean locations on either side of the particular displacement 

behaves like a rigid body while the remainder of the element does not participate in the motion. Thus, 

this assumption excludes the dynamic coupling that exists between the element displacements, and 

hence the resulting element mass matrix is purely diagonal and is called the "'lumped" mass matrix. 

The lumped mass matrix of the element can be obtained 

 

Consistent Mass Matrix of a Beam Element 

For a beam bending element, tile axial displacement degrees of freedom need not be considered and the 

consistent mass matrix becomes  
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INTRODUCTION TO ANALYSIS SOFTWARE: 

21. Explain in detail about the steps in FEA 

Steps in FEA using Pro-Mechanica 

 Step 1: Draw part in Pro-Engineer 

 Step 2: Start Pro-Mechanica 

 Step 3: Choose the Model Type 

 Step 4: Apply the constraints 

 Step 5: Apply the loads 

 Step 6: Assign the material 

 Step 7: Run the Analysis 

 Step 8: View the results by post-processing 

Step 1: Creation of the part 

Use Protrusion by Sweep to create this part (bar.prt) 

 

Step 2: Starting Pro-Mechanica 

 In Pro-Engineer window, go to ApplicationsMechanica to start Pro-Mechanica.  

 The part (bar.prt) will be loaded in Pro-Mechanica with a new set of icons for Structural, thermal 

Analysis 

Step 3: Choosing the model type 

 In Mechanica menu, select  
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 Structure  Model Model Type 

 Four different models can be created: 

 3D Model 

 Plane Stress 

 Plane Strain 

 2D Axisymmetric 

 We will select 3D Model 

Step 4: Applying the Constraints 

 Create a new constraint by  

 Model Constraints New Surface  

 Give a name for the constraints (fixed_face) and select the surface to be constrained 

 Specify the constraints (in our case will be fixed for all degrees of freedom) 

 Preview and press Ok 

Step 5: Applying the loads 

 Similar to Constraints, create a new load by Model  Load New  Surface 

 Give a name for the applied load (endload) 

 Select the surface where the load will be applied 

 Specify the loads (Fx:500, Fy:-250, Fz:0) 

 Preview and press Ok 

Step 6: Assigning the material 

 Model  Materials 

 A window will pop up with the list of Pro-Mechanica materials. Add the required material and 

then assign the material to the part. 

 Click on Edit if any change in material properties are to be made. 

 Press Ok 
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Modeled part with constraints and loads 

 

 

 

 

 

 

Step 7: Running the Analysis 

 In Mechanica menu, select Analysis 

 Select File  New Static in “Analysis and Design Studies” dialog box and give a name for the 

analysis (bar). 

 The constraints and loads are automatically loaded.  

 In Convergence tab, select Quick Check to check for errors and then select Multi-pass adaptive 

for the reliable and accurate results. Change the order of the polynomial and percentage of 

convergence as required. 

 Finally, click on Run icon to start the analysis (click on Display Study Status to view the current 

status and completion of the analysis) 

Step 8: Viewing the results 

 For post-processing, select Results from Pro-Mechanica window 

 A new window will open, and click on “Insert a New Definition” icon. In the dialog box, select 

the folder where the analysis is saved. 

 Select Fringe as Display type, Stress as Quantity and von-mises as the stress component to 

display 

 Similarly, other quantities can be displayed in one window. 

Post-processing Results 
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Two Marks Question and Answers. 

UNIT-V 

1. Define natural co-ordinate systems 

A Natural Co-ordinate system is a local co-ordinate system that permits the specification of a point 

within an element by a set of dimensionless numbers whose absolute magnitude never exceeds unity 

i.e. A I Dimensional element described by means of its  two end vertices (x1& x2) in Cartesian space is 

represented or mapped on to Natural co-ordinate space by the line whose end vertices 1&2 are given 

by –1 & +1 respectively.  

 
2. List some of the advantages of natural co-ordinate systems 

v. It is very convenient in constructing    interpolation functions. 

vi. Integration involving Natural co-ordinate can be easily performed as the limits of the Integration 

is always from –1 to +1. This is in contrast to global co-ordinates where the limits of Integration 

may vary with the length of the element. 

vii. The nodal values of the co-ordinates are convenient number or fractions. 

viii. It is possible to have elements with curved sides. 

3. List some 1D element. 
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4. List some 2 D element. 

 
5. List some 3D element. 
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6. How the local coordinates are Conved into natural coordinates  

 

 
 

7. Express Lagrangian Interpolation polynomials for rectangular Element: (Natural Co-

ordinates) 

 
8. Write the shape function for Nine Noded Quadratic Quadrilateral element 

 

N1(,) = N1 () N2() = ¼ (2-) (2-) 
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N2(,) = ½ (1 - 2) (2-) 

N3(,) = ¼ (2 + ) (2-) 

N4(,) = ½ (2  - ) (1 - 2) 

N5(,) =  (1 - 2 ) (1 - 2) 

N6(,) = ½ (2 + ) (1 - 2) 

N7(,) = ¼ (2 - ) (2 + ) 

N8(,) = ½  (1 - 2) (2 + ) 

N9(,) = ¼ (2 + ) (2 + ) 

 

9. Write Shape functions for Eight noded quadrilateral element 

 

N1(,) = - ¼ (1 - )(1 -  ) (1 +  + ) 

N2 (,) = ½ (1 – 2)(1 - ) 

N3 (,)  = ¼ (1 + ) (1 - ) (-1 +  -) 

N4(,)  = ½ (1 - ) (1 - 2) 

N5 (,)  = ½  (1 + ) (1 - 2) 

N6 (,)  = ¼  (1 -  ) (1 + ) (-1 -   + ) 

N7 (,)  = ½  (1 -  2) (1 + ) 

N8 (,)  = ¼ (1 + ) (1 + ) (-1 +  + ) 

10. Express the Shape functions for CST element 
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N1(,) = c (1 -  - )      N2(,) = c ()  

N1(0,0) = c (1)=1            N2(1,0) = c (1) =1 

c=1                             c=1  

N1(,) = (1 -  - )         N2(,) =  

Similarly N3=  

11. Express the Shape functions for LST element 

 

 

 

 

 

 

 

 

12. What is meant by isoparametric  elements? 

The element is said to be isoparametric when the shape functions defining the displacement pattern and 

geometry are the same and are of the same order. 

13. What are the three classification of parametric elements? 

Depending upon the relationship between these two polynomials elements are classified into three 

categories as 

IV. sub parametric elements     r < s 

V. iso-paramatric elements      r = s 

VI. super-parametric elements    r > s 













)1(4

4

)1()(4

)()2/1(2

)2/1()(2

)221()1(

6

5

4

3

2

1













N

N

N

N

N

N
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14. what is meant by Jacobian of Transformation 

Among the 3 cases given above Isoparametric are more commonly used due to their advantages which 

include the following: 

i) Quadrilateral elements in (x,y) coordinates with curved boundaries get transformed to a rectangle of (2 

x 2) units in (, ) co-ordinates 

ii) Numerical integration is more easily performed as limits of integration vary from –1 to +1 for all 

elements.  

we use the chain rule. 

 

Here J = dx/ d is the ‘Jacobian’ of transformations from Cartesian space to natural co-ordinate 

space. It can be considered as the scale factor between the two co-ordinate systems. 

Jacobian of transformation for 2 Noded Linear Element 

For a 2 Noded element the shape functions are given by   

N1 () =  (1 - )/2 

N2 () = (1+)/2 

Now x = N1x1 + N2 x2 

           = (1 - )/2  x1 + (1 +) x2  

dx/d = J  = (-1 x1 )2+  x2/2   

           = (x2 – x1)/2  =  L/2                    

Here (x2 – x1) represents the length of the element.  So the Jacobian of transformation for a 2 noded 

element is given by L/2 

3- Noded Quadratic element:- 
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15. Write the Stiffness Matrix for a 2 Noded Axial Element 

 

16. What is meant by Gauss Quadrature? 

Amongst the several schemes available for evaluating the area under the curve F(x) between two 

points the gauss quadrature method has proved to be most useful for isoparametric elements. As in 

isoparametric formulation, the limits of the integral are always from –1 to +1, the problem in gauss 

integration is to evaluate the integral  

               +1 

      I =       F() d. 

         -1 

17. Tabulate the sampling points and the associated weights (wi) for Gauss quadrature. 
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18. What is the purpose of isometric elements? 

It is difficult to represent the curved boundaries by straight edges finite elements. A large number 

of finite elements may be used to obtain reasonable resemblance between original body and the 

assemblage. In order to overcome this drawback, isoparametric elements are used, for problems 

involving curved boundaries, a family of elements known as “isoparametric elements” are used. 

19. Write down the shape functions for 4 noded rectangular elements using natural co-

ordinates system. (AU-APR/MAY-2011) 

Shape functions: N1=  

                 N2=  

                            N3=  

                           N4=  

Where and are natural co-ordinates. 

20. Write down the Jacobin matrix for four noded quadrilateral elements. (AU-APR/MAY-

2012). 

Jacobin matrix, [J]=  

Where, J11=  

 J22=
 

J21=
 

4

1
    11

4

1
    11

4

1
    11

4

1
    11

 










2221

1211

JJ

JJ

        4321 1111
4

1
xxxx  

        4321 1111
4

1
yyyy  

        4321 1111
4

1
xxxx  
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J22=
 

Where and are natural co-ordinates. 

 x1,x2,x3,x4,y1,y2,y3,y4 are Cartesian co-ordinates. 

 

 

21. Write  down the stiffness equation for four nodedisoparametric quadrilateral element. 

Stiffness matrix,  

Where, t= thickness of the element 

=determinant of the Jacobin 

=natural coordinates. 

               [B]=strain-displacement matrix. 

              [D]=stress-strain relationship matrix. 

22. Write down the element force vector equation for four noded quadrilateral elements. 

Force vector,  

Where, N-is the shape function 

Fx-is a load or force on x-direction 

Fy-is a force on y-direction. 

23. Write down the Gaussian quadrature expression for numerical integration. 

 Gaussian quadrature expression: 

 

Where, Wi=weight function 

f(xi)-values of the function at pre-determined sampling points. 

24. Define super parametric element. (AU-APR/MAY-2013) 

If the number of nodes used for defining the geometry is more than number of nodes used 

for defining the displacement, then it is known as super parametric element. The super 

parametric elements are quadratic element which has the many number of nodes to get the 

nearest possible solution for the problem. The defined structure or the boundary of the defined 

problem. 

25. What is meant by sub-parametric element? 

If the number of nodes used for defining the geometry is less than number of nodes used 

for defining the displacement, then it is known as sub-parametric element. Sub parametric 

elements are simple element which are divided when the elements are giving solution possible 

functions. The functions are the difference between the original value and the find value from the 

problem. 
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 Generalized coordinates approach to nodal approximations – difficulties  

26. What is meant by isoparametric element? (AU-APR/MAY-2014) 

If the number of nodes used for defining the geometry is same as number of nodes used for 

defining the displacement, the n it is known as isoparametric element. Isoparametric elements of 

simple shapes expressed in natural coordinate system known as master elements are the 

transformed shapes of some arbitrary curved sided actual elements expressed in Cartesian 

coordinate system. 

 

27. Is beam element an isoparametric element? 

Beam element is not an isoparametric element since the geometry and displacement defining by 

different order interpolation functions. Isoparametric elements of simple shapes expressed in 

natural coordinate system known as master elements are the transformed shapes of some 

arbitrary curved sided actual elements expressed in Cartesian coordinate system. 

 

28. What is the difference between natural co-ordinate and simple natural co-ordinate? 

A natural co-ordinate is one whose value lies between zero and one. 

Examples L2=x/l;    L1=(l-x/l) 

Area co-ordinates;  

L1=A1/A; L2=A2/A; L3=A3/A 

A simple natural co-ordinate is one whose value lies between -1 and +1. 

29. Give examples for essential (forced or geometric) and non-essential  (natural) 

boundaryconditions. 

Essential boundary condition: 

The geometric boundary conditions are displacement. Slope, etc. 

Non-essential boundary condition: 

 The natural boundary conditions are bending moment, shear force, etc. 

30. Calculate the jacobian of the transformation J for the triangular element shown in fig. 

 
Solution: 

r1=2;   Z1=3 

r2=5;   Z2=3 

r3=3;   Z3=6 
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=3+6=9 units. 

31. Write short note on isoparametric element formulation. (AU-APR/MAY-2011) 

Isometric  formulation: 

 The principal concept of isoparametric finite element is to express the element 

coordinates and element displacements in the form of interpolations using the natural coordinate 

system of the element. These isoparametric elements of simple shapes expressed in natural 

coordinate system known as master elements are the transformed shapes of some arbitrary 

curved sided actual elements expressed in Cartesian coordinate system. 

iso-parametric elements – structural mechanics applications in 2-dimensions 

32. Differentiate isoparametric, super  parametric and sub parametric elements. 

Isoparametric: 

 For an element if the geometry and field variables are described by the same shape 

function of equal order. 

Super parametric: 

 If the order of the shape functions for describing the geometry is more than that of the 

describing field variable. 

Parametric element: 

 If the order of the shape function describing the geometry is less than that for describing 

field variable. 

33. Define higher order element. (AU-APR/MAY-2010) 

Higher order element: 

 For any element if the interpolation polynomial is of order two or more the element is 

known as higher order element. In higher order element the field variable variation is non-linear. 

Also it may be a complex or multiplex element. In higher order element some secondary  nodes 

are produced in addition to the primary nodes in order to match the number of nodal degrees of 

freedom with the number of polynomial coefficients in the polynomial interpolation.  

34. Write in brief  about gauss – quadrature method. 

Gauss-quadrature method: 

 Gauss quadrature is thesimple integration method for the definite integrals. It includes 

some specific functions like weight functions and some sampling points called Gauss-point 

through which the approximation method has been   carried out.  

For example 

  

35. Distinguish between geometric and non – linearity. 

Geometry: 

 Geometry defines the specified structure  of any object which gives the boundary of the 

element in a easy way. Geometry defines structured problems with known quantity and values. 

Non – linearity: 

J

( )

b

a

I f x dx 
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 The non –structural problems are comes under the non – linearity which gives the 

geometry by dividing the element in specified structures like triangular, rectangular or 

quadrilateral elements. 

36. What are the differences between implicit and explicit methods of integration? 

Implicit methods of integration: 

 The indirect method of integration is known as implicit method of integration which 

defines the complicated problem for which we are not able to get the nearest solution through 

direct method so the implicit method of integrations are used to find the values of such problems. 

Explicit methods of integration: 

 The direct method of integration which gives direct solution and are analysed the direct 

boundary value problems. 

37. Writeshortnoteononepoint andtwopoint Gaussian quadratureapproach. 

Gaussian point in Gauss quadrature approach: 

 In Gauss quadrature method the Gaussian point will be located at equal distances from 

the origin in the opposite direction. They are symmetrically located in all the element like 

rectangle or curved elements and are specified by the integral. The distance of the Gauss point 

from the origin and the values of weight function is located upto five points (n = 1, 2, 3, 4, 5). 

Elasticity equations –stress strain relations – plane problems of elasticity – element equations 

38. What ismeant bytwo dimensional vectorvariable problem? 

Two dimensional vector variable problem: 

 In vector variable problem the field variable must be described by its magnitude and 

direction of action in order to get complete information and for further process. In this problem 

vector quantity is resolved into components parallel to the coordinate axes and these components 

are treated as the unknown quantities. There will be two unknown parameter at any node in the 

vector variable problem. 

39. What problem aretreated astwo dimensional vector variableproblem? 

Problems treated as two dimensional vector variable: 

 In general the structural problems are treated as the two dimensional vector variable 

problems for which the nodal displacements due to applied load are resolved into components 

and processed further. The problems are divided by the system according to the functions as 

simplex, complex and multiplex elements. 

Assembly – need for quadrature formule – transformations to natural coordinates 

 

40. Specify the various elasticity equations. 

Elasticity equations: 

 The equation relating the normal stresses and shear stresses with linear strains and shear 

strains  are known as elasticity  
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41. Differentiate plane stress with plane strain for two dimensional element. 

Plane stress: 

 A state of plane stress  is said to exist when the elastic body is very thin and there is no 

load applied in the coordinate direction parallel to the thickness.  

Example: a ring press – fitted on a shaft is a plane stress problem. 

Plane strain: 

 A state of plane strain occurs in members that are not free to expand in the direction 

perpendicular to the plane of applied loads. 

Example: in a long body of uniform cross-section subjected to transverse loading along its length 

a small thickness in the loaded area can be treated as plane strain problem. 

42. Write short note on principal stresses. (AU-NOV/DEC-2010) 

Principal stresses: 

The principal stresses are the components of the stress tensor when the basis is changed 

in such a way that the shear stress components become zero. To find the principal stresses in two 

dimensions, we have to find the angle at which . This angle is given by 

  
43. What do you meant by isoparametric representations? 

Isoparametric representations: 
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Gaussian quadrature –plane strain and axisymmetric applications 

 

44. What is constitutive relationship? 

Constitutive relationship: 

 Constitutive relationship is the stress strain relationship in the element. 

  

E – Young’s modulus 

45. Define frequency of vibration. 

It is the number of cycles described in one second. Unit is HZ 

46. Define damping ratio. 

It is define as the ratio of actual damping coefficient (c) to the critical damping coefficient (cc) 

  Damping ratio ɛ = 
𝑐

𝑐𝑐
   =    

𝑐

2𝑚𝜔𝑛
0 

47. What is meant by longitudinal vibration? 

When the particles of the shaft or disc moves parallel to the axis of the shaft, then the vibrations are 

known as longitudinal vibration. 

48. What is meant by transverse vibration? 

When the particles of the shaft or disc moves approximately perpendicular to the axis of the shaft, then 

the vibrations are known as transverse vibration. 

49. Define magnification factor. 

The ratio of the maximum displacement of the forced vibration (xmax) to the static deflecyion under the 

static force (x0) is known as magnification factor. 

50. Write down the expression of longitudinal vibration of bar element. 

Free vibration equation for axial vibration of bar element is  

   [𝐾]{𝑢}  =  𝜔2[𝑚]{𝑢} 

  Where,    u  - displacement  

   [𝐾]–  stiffness matrix 

[𝐾] − 
𝐴𝐸

𝐿
[

1 −1
−1 1

] 

   𝜔 – natural frequency  

    [𝑚] – mass matrix 

   Lamped [𝑚] =  
𝜌𝐴𝑙

2
[
1 0
0 1

] 

            Consistent [𝑚] =  
𝜌𝐴𝐿

2
[
2 1
1 2

] 

51. Write down the expression of governing equation for free axial vibration of rod. 
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The governing equation for free axial vibration of rod is given by, 

   𝐴𝐸 
𝜕2𝑢

𝜕𝑥2   =  𝜌𝐴  
𝜕2𝑢

𝜕𝑡2  

                                     Where,   E – Young’s modulus, 

             A – cross section area 

  𝜌 – density 

52. Write down the expression of governing equation for transverse vibration of beam 

The governing equation for free transverse vibration of a beam is  

   𝐸𝐼 
𝜕4𝑣

𝜕𝑥4 +  𝜌𝐴
𝜕2𝑣

𝜕𝑡2 = 0 

  Where, E –Young’s modulus 

   I –moment of inertia 

   𝜌 –density 

                                           A –cross sectional area 

53. Write down the expression of transverse vibration of beam element. 

Free vibration equation for transverse vibration of beam element is, 

   [𝐾]{𝑢}  =  𝜔2[𝑚]{𝑢} 

                  Where,           [𝐾] = stiffness matrix for beam element 

 [𝐾] =  
𝐸𝐼

𝐿3
[

12 6𝐿
6𝐿 4𝐿2

−12 6𝐿
−6𝐿 2𝐿2

−12 −6𝐿
6𝐿 2𝐿2

12 −6𝐿
−6𝐿 4𝐿2

] 

 [𝑚] = mass matrix 

[𝑚] =
𝜌𝐴𝐿

420
[

156 22𝐿
22𝐿 4𝐿2

54 −13𝐿
13𝐿 −3𝐿2

54 13𝐿
−13𝐿 −3𝐿2

156 −22𝐿
−22𝐿 4𝐿2

]  𝑓𝑜𝑟 𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑡 𝑚𝑎𝑠𝑠 𝑚𝑎𝑡𝑟𝑖𝑥 

[𝑚] =
𝜌𝐴𝐿

2
[

1 0
0 0

0 0
0 0

0 0
0 0

1 0
0 0

]  𝑓𝑜𝑟 𝑙𝑢𝑚𝑝𝑒𝑑 𝑚𝑎𝑠𝑠 𝑚𝑎𝑡𝑟𝑖𝑥 

54. What are the types of Eigen value problem? 

There are essentially three groups of method of solution, 

1. Determinant based methods 

2. Transformation based methods 

3. Vector iteration methods 

55. State the principle of superposition. 

It states that for linear system, the individual responses to several disturbances or driving function can be 

superposed on each other to obtain the total response of the system. 

56. Define resonance. 

When the frequency of external force is equal to the natural frequency of a vibration body, the amplitude 

of vibration becomes excessively large. This phenomenon is known as resonance. 

57. Define Dynamic Analysis. 

When the inertia effect due to the mass of the component is also considered in addition to the externally 

applied load, then the analysis is called dynamic analysis. 
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58. What are methods used for solving transient vibration problem? 

There are two methods for solving transient vibration problem. They are: 

 Mode superposition method  

 Direct integration method. 

59. Write down the expression for undamped system of Direct Integration Method in Central 

Difference Method. 

For an undamped system, 

1

(∆𝑡)2
[𝑚]{𝑋𝑛+1}  = 𝐹(𝑡𝑛) − [[𝐾] −  

2

(∆𝑡)2
[𝑚]] {𝑋𝑛} −  

1

(∆𝑡)2
[𝑚]{𝑋𝑛−1} 

 

60. State the two difference between direct and iterative methods for solving system of equation. 

Direct Method  Iterative Method 

(i) It given exact value It gives only approximate solution  

(ii) Simple, take less time Time consuming and labourious 

(iii) Determine all the roots at the same 
time 

Determine only one root at the time 

61. Define linear dependence and independence of vectors. 

Linear dependence: The vectors X1,X2,…….Xn are said to be linearly dependent if there exist scalars 

λ1,λ2,….. λn (not all zero) such that, 

 X1 λ1 + X2 λ2 +………+ Xnλn =0 

Independence: The vector X1, X2,……….Xn are said to be linearly independent if λ1 X1 + λ2 X2 

+……………..+ λnXn is equal to zero such that 

 λ1 =0, λ2 =…………………..= λn 

62. Show that the matrix,𝑨 =  ( 𝐜𝐨𝐬 𝜽 𝐬𝐢𝐧 𝜽
− 𝐬𝐢𝐧 𝜽 𝐜𝐨𝐬 𝜽

) is orthogonal. 

Solution: [𝐴]   = (
cos 𝜃 sin 𝜃

− sin 𝜃 cos 𝜃
) 

∴      [𝐴]𝑇 = (cos 𝜃 − sin 𝜃
sin 𝜃 cos 𝜃

) 

∴    [𝐴]𝑇[𝐴]  = ( cos 𝜃 sin 𝜃
− sin 𝜃 cos 𝜃

) (cos 𝜃 − sin 𝜃
sin 𝜃 cos 𝜃

) 

     =  [cos.2 𝜃 +  sin.2 𝜃 0
0 cos.2 𝜃 + sin.2 𝜃

] 

     = [
1 0
0 1

] = 1 

∴ A is orthogonal. 

63. Prove that the vector (1,4,-2),(-2,1,3) and (-4,11,5) are linearly dependent. 

Solution:             𝐴 =  |
1 4 −2

−2 1 3
−4 11 5

| |𝐴| =  |
1 4 −2

−2 1 3
−4 11 5

| 

   = 1(5-33)-4(-10+12)-2(-22+4)  |𝐴|  = 0 
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